Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (2): 43-51    DOI: 10.11925/infotech.2096-3467.2018.0546
Current Issue | Archive | Adv Search |
Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis
Mingqing Zhao,Shengqiang Wu()
College of Mathematics and Systems Sciences, Shandong University of Science and Technology, Qingdao 266590, China
Download: PDF (709 KB)   HTML ( 5
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to construct a stock market weighted prediction model based on micro-blog sentiment analysis. [Methods] Combining the Baidu index, using the time difference correlation coefficient and the random forest to select the initial keyword of micro-blog search, through the Web crawler to obtain the micro-blog information, using the text mining technology to deal with the micro-blog text, judge the emotional polarity of the micro-blog after the participle, analysis of influence factors on the influence of micro-blog, using information gain to determine the weight of micro-blog. [Results] The tendency of emotional integration is basically consistent with the trend of stock prices, and the result accuracy rate is higher. [Limitations] A better adjustment function for the frequency of words is needed. Feature selection does not take into account the relationships among features. [Conclusions] The empirical results show that the model has good prediction effect.

Key wordsBaidu Index      Micro-blog Sentiment      Micro-blog Influence      Stock Price      Prediction Model     
Received: 15 May 2018      Published: 27 March 2019

Cite this article:

Mingqing Zhao,Shengqiang Wu. Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis. Data Analysis and Knowledge Discovery, 2019, 3(2): 43-51.

URL:     OR

[1] Bollen J, Mao H, Pepe A.Determining the Public Mood State by Analysis of Microblogging Posts[C]//Proceedings of the Alife XII Conference. 2010: 56-65.
[2] Cha M, Haddadi H, Benevenuto F, et al.Measuring User Influence in Twitter: The Million Follower Fallacy[C]// Proceedings of the 2010 International Conference on Weblogs and Social Media. 2010.
[3] Kontopoulos E, Berberidis C, Dergiades T, et al.Ontology- based Sentiment Analysis of Twitter Posts[J]. Expert Systems with Applications, 2013, 40(10): 4065-4074.
[4] Brown G W, Cliff M T.Investor Sentiment and the Near-term Stock Market[J]. Journal of Empirical Finance, 2004, 11(1): 1-27.
[5] Ginsberg J, Mohebbi M H, Patel R S, et al.Detecting Influenza Epidemics Using Search Engine Query Data[J]. Nature, 2009, 457(7232): 1012.
[6] D’Amuri F, Marcucci J. The Predictive Power of Google Searches in Forecasting Unemployment[OL]. [2018-02-14]. .
[7] Da Z, Engelberg J, Gao P.The Sum of All Fears Investor Sentiment and Asset Prices[J]. Social Science Electronic Publishing, 2009, 28(10): 1-32.
[8] 王超, 李楠, 李欣丽, 等. 倾向性分析用于金融市场波动率的研究[J]. 中文信息学报, 2009, 23(1): 95-99.
[8] (Wang Chao, Li Nan, Li Xinli, et al.The Research on Financial Volatility with Sentiment Analysis[J]. Journal of Chinese Information Processing, 2009, 23(1): 95-99.)
[9] 黄俊, 郭照蕊. 新闻媒体报道与资本市场定价效率——基于股价同步性的分析[J]. 管理世界, 2014(5): 121-130.
[9] (Huang Jun, Guo Zhaorui.News Media Coverage and the Pricing Efficiency of Capital Market —— Analysis of Synchronism Based on Stock Price[J]. Management World, 2014(5): 121-130.)
[10] 仇冬. 投资者情绪对中国股市收益与收益波动影响实证研究[D]. 武汉: 华中科技大学, 2012.
[10] (Qiu Dong.Investor Sentiment、Stock Market Returns and Volatility in China [D]. Wuhan: Huazhong University of Science and Technology, 2012.)
[11] 王朝晖, 李心丹. 我国投资者情绪波动性与股市收益[J]. 宁波大学学报: 人文版, 2008, 21(6): 89-93.
[11] (Wang Zhaohui, Li Xindan.An Empirical Analysis on Investor Sentiment Volatility and Stock Market Return in China[J]. Journal of Ningbo University: Liberal Arts Edition, 2008, 21(6): 89-93.)
[12] 宋双杰, 曹晖, 杨坤. 投资者关注与IPO异象——来自网络搜索量的经验证据[J]. 经济研究, 2011(S1): 145-155.
[12] (Song Shuangjie, Cao Hui, Yang Kun.Investors Attention and IPO Anomalies-Evidence from Google Trend Volume[J]. Economic Research Journal, 2011(S1): 145-155.)
[13] 闫伟. 基于投资者情绪的行为资产定价研究[D]. 广州: 华南理工大学, 2012.
[13] (Yan Wei.Research on Behavior Asset Pricing Based on Investor Sentiment[D]. Guangzhou: South China University of Technology, 2012.)
[14] 汪昌云, 武佳薇. 媒体语气、投资者情绪与IPO定价[J]. 金融研究, 2015(9): 174-189.
[14] (Wang Changyun, Wu Jiawei. Media Tone, Investor Sentiment and IPO Pricing[J]. Journal of Financial Research, 2015(9): 174-189.)
[15] 俞庆进, 张兵. 投资者有限关注与股票收益——以百度指数作为关注度的一项实证研究[J]. 金融研究, 2012(8): 152-165.
[15] (Yu Qingjin, Zhang Bing.Limited Attention and Stock Performance: An Empirical Study Using Baidu Index as the Proxy for Investor Attention[J]. Journal of Financial Research, 2012(8): 152-165.)
[16] 刘红梅. ARIMA模型在股票价格预测中的应用[J]. 轻工科技, 2008, 24(6): 92-93.
[16] (Liu Hongmei.The Application of ARIMA Model in Stock Price Prediction[J]. Light Industry Science and Technology, 2008, 24(6): 92-93.)
[17] 吴玉霞, 温欣. 基于ARIMA模型的短期股票价格预测[J]. 统计与决策, 2016(23): 83-86.
[17] (Wu Yuxia, Wen Xin.Short-term Stock Price Prediction Based on ARIMA Model[J]. Statistics & Decision, 2016(23): 83-86.)
[18] 刘海飞, 李心丹. 基于EMD方法的股票价格预测与实证研究[J]. 统计与决策, 2010(23): 131-134.
[18] (Liu Haifei, Li Xindan.Stock Price Forecasting and Empirical Research Based on EMD Method[J]. Statistics & Decision, 2010(23): 131-134.)
[19] 朱林, 常松, 何建敏. 小波包与神经网络相结合的股票价格预测模型[J]. 中国管理科学, 2002, 10(4): 7-12.
[19] (Zhu Lin, Chang Song, He Jianmin.Forecasting Model of Stock Price by Wavelet Packet Integrated Neural Network[J]. Chinese Journal of Management Science, 2002, 10(4): 7-12.)
[20] 杨小平. 基于主成分与BP神经网络的股票价格预测分析[J]. 统计与决策, 2004(12): 42-43.
[20] (Yang Xiaoping.Stock Price Prediction Analysis Based on Principal Component Analysis and BP Neural Network[J]. Statistics & Decision, 2004(12): 42-43.)
[21] 孟雪井, 孟祥兰, 胡杨洋. 基于文本挖掘和百度指数的投资者情绪指数研究[J]. 宏观经济研究, 2016(1): 144-153.
[21] (Meng Xuejing, Meng Xianglan, Hu Yangyang.Research on Investor Sentiment Index Based on Text Mining and Baidu Index[J]. Macroeconomics, 2016(1): 144-153.)
[22] 许伟. 基于网络大数据的社会经济监测预警研究[M]. 北京: 科学出版社, 2016.
[22] (Xu Wei.Research on Social and Economic Monitoring and Early Warning Based on Network Large Data[M]. Beijing: Science Press, 2016.)
[23] 简祯富, 许嘉裕. 大数据分析与数据挖掘[M]. 北京: 清华大学出版社, 2016.
[23] (Jian Zhenfu, Xu Jiayu.Large Data Analysis and Data Mining[M]. Beijing: Tsinghua University Press, 2016.)
[1] Che Hongxin,Wang Tong,Wang Wei. Comparing Prediction Models for Prostate Cancer[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[2] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[3] Juhua Wu,Shuo Zhang,Lei Tao,Shunjun Jiang. Predicting Stroke Risks with Neural Network[J]. 数据分析与知识发现, 2019, 3(12): 70-75.
[4] Ma Xiaoyu,Zhang Han,Zhao Yuhong. Building Childhood Asthma Prediction Model with Artificial Neural Network and BRFSS Database[J]. 数据分析与知识发现, 2018, 2(8): 10-15.
[5] Yu Chuanming,Gong Yutian,Wang Feng,An Lu. Predicting Stock Prices with Text and Price Combined Model[J]. 数据分析与知识发现, 2018, 2(12): 33-42.
[6] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[7] Yuan Fuyong, Feng Jing, Fu Qianqian. Influence Index Model of Micro-blog User[J]. 现代图书情报技术, 2012, 28(6): 60-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938