Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (6): 109-116    DOI: 10.11925/infotech.2096-3467.2018.1240
Current Issue | Archive | Adv Search |
Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty
Haici Yang,Jun Wang()
Information Management Department, Peking University, Beijing100871, China
Download: PDF (1047 KB)   HTML ( 27
Export: BibTeX | EndNote (RIS)      

[Objective] The study constructs a knowledge graph of academic relationships among scholars in China’s Song Dynasty, aiming to provide new techniques for knowledge exploration in humanity research. [Context] Our study addresses the usability and visualization issues facing digital collections (i.e. the China Biographical Database Project), and establishes a knowledge portal for history researchers and amateurs. [Methods] First, we built the ontology of ancient Chinese scholars. Then, we transformed their relationship to RDF data for the knowledge graph. Finally, we created an online platform to demonstrate the visualization results. [Results] We created the knowledge graph with five classes and 39 relationships based on 48,018 peoples and 6,599 geographic data. The Song’s Academic Inheritance Platform integrates the RelFinder visualization tool to display the entities’ relationships in the knowledge graph. [Conclusions] This study offers practical solutions for semantic research on the China Biographical Database Project and related fields in history.

Key wordsAcademia in Song Dynasty      Digital Humanities      Knowledge Graph      Visualization     
Received: 08 November 2018      Published: 15 August 2019

Cite this article:

Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty. Data Analysis and Knowledge Discovery, 2019, 3(6): 109-116.

URL:     OR

[1] 王国维. 王国维遗书. 第四册[M]. 上海: 上海书店出版社, 1983.
[2] Harvard University, Academia Sinica,Peking University, China Biographical Database[EB/OL]. [2018-01-01]..
[3] 刘炜, 叶鹰. 数字人文的技术体系与理论结构探讨[J]. 中国图书馆学报, 2017, 43(5): 32-41.
[3] (Liu Wei, Ye Ying.Exploring Technical System and Theoretical Structure of Digital Humanities[J]. Journal of Library Science in China, 2017, 43(5): 32-41.)
[4] The China Historical Geographic Information System, CHGIS [EB/OL]. [2019-06-13]..
[5] 中华文明之时空基础架构[EB/OL]. [2019-06-13]. .
[5] (Chinese Civilization in Time and Space [EB/OL]. [2019-06-13].
[6] Liu C L, Huang C K, Wang H, et al.Mining Local Gazetteers of Literary Chinese with CRF and Pattern Based Methods for Biographical Information in Chinese History[C]//Proceedings of 2015 IEEE International Conference on Big Data. IEEE, 2015: 1629-1638.
[7] 王东波, 高瑞卿, 沈思, 等. 面向先秦典籍的历史事件基本实体构件自动识别研究[J]. 国家图书馆学刊, 2018(1): 65-77.
[7] (Wang Dongbo, Gao Ruiqing, Shen Si, et al.Research on Automatic Recognition of Basic Entity Component of Historic Events for Pre-Qin Classics[J]. Journal of the National Library of China, 2018(1): 65-77.)
[8] 欧阳剑. 面向数字人文研究的大规模古籍文本可视化分析与挖掘[J]. 中国图书馆学报, 2016, 42(2): 66-80.
[8] (Ouyang Jian.Visual Analysis and Exploration of Ancient Texts for Digital Humanities Research[J]. Journal of Library Science in China, 2016, 42(2): 66-80.)
[9] Allen C, Luo H, Murdock J, et al. Topic Modeling the HànDiăn Ancient Classics[OL]. arXiv Preprint. arXiv:1702.00860, 2017.
[10] Nichols R, Slingerland E, Nielbo K L, et al.Modeling the Contested Relationship Between Analects, Mencius, and Xunzi: Preliminary Evidence from a Machine-Learning Approach[J]. The Journal of Asian Studies, 2018, 77(1): 19-57.
[11] 严承希, 王军. 数字人文视角: 基于符号分析法的宋代政治网络可视化研究[J]. 中国图书馆学报, 2018, 44(5): 87-103.
[11] (Yan Chengxi, Wang Jun.Digital Humanistic Perspective: A Study on the Visualization of Political Network in Song Dynasty Based on Symbolic Analysis[J]. Journal of Library Science in China, 2018, 44(5): 87-103.)
[12] Kyvernitou I, Bikakis A. An Ontology for Gendered Content Representation of Cultural Heritage Artefacts[J/OL]. Digital Humanities Quarterly, 2017, 11(3). .
[13] Chang R Y, Huang C R, Lo F J, et al.From General Ontology to Specialized Ontology: A Study Based on a Single Author Historical Corpus[C]// Proceedings of OntoLex 2005- Ontologies and Lexical Resources, 2005.
[14] Huang C R, Lo F, Chang R Y, et al.Reconstructing the Ontology of the Tang Dynasty: A Pilot Study of the Shakespearean-garden Approach[C]//Proceedings of OntoLex 2004 Workshop. 2004.
[15] Camarda D V, Mazzini S, Antonuccio A.LodLive, Exploring the Web of Data[C]//Proceedings of the 8th International Conference on Semantic Systems. ACM, 2012: 197-200.
[16] 陈涛, 刘炜, 朱庆华. 中文百科概念术语服务平台SinoPedia的构建研究[J].中国图书馆学报, 2018, 44(4): 4-18.
[16] (Chen Tao, Liu Wei, Zhu Qinghua.SinoPedia: An Unified Chinese Terminology Service Platform Based on Linked Data[J]. Journal of Library Science in China, 2018, 44(4): 4-18.)
[17] Faber P, Mairal R, Magaña P.Linking a Domain-Specific Ontology to a General Ontology[C]//Proceedings of the 24th International Florida Artificial Intelligence Research Society Conference. 2011.
[18] Bäumer F S, Gim J, Jeong D H, et al.Linked Open Data System for Scientific Data Sets[C]//Proceedings of the 1st International Workshop on Patent Mining and Its Applications. 2014.
[19] Linked Open Data Platform for EBI Data[EB/OL]. [2018-09-06]..
[20] Jupp S, Malone J, Bolleman J, et al.The EBI RDF Platform: Linked Open Data for the Life Sciences[J]. Bioinformatics, 2014, 30(9): 1338-1339.
[21] Kauppinen T, Baglatzi A, Keßler C.Linked Science: Interconnecting Scientific Assets[A]// Data-Intensive Science[M]. CRC Press, 2012.
[22] Kauppinen T, de Espindola G M, Jones J, et al. Linked Brazilian Amazon Rainforest Data[J]. Semantic Web, 2013, 5(2): 151-155.
[23] Scheider S, Degbelo A, Lemmens R, et al.Exploratory Querying of SPARQL Endpoints in Space and Time[J]. Semantic Web, 2016, 8(1): 65-86.
[24] Klímek J, Helmich J, Necaský M.Application of the Linked Data Visualization Model on Real World Data from the Czech LOD Cloud[C]//Proceedings of LDOW 2014. 2014.
[25] Niepert M, Buckner C, Murdock J, et al.InPhO: A System for Collaboratively Populating and Extending a Dynamic Ontology[C]//Proceedings of the 8th ACM/IEEE-CS Joint Conference on Digital Libraries. ACM, 2008.
[26] 夏翠娟, 刘炜, 陈涛, 等. 家谱关联数据服务平台的开发实践[J]. 中国图书馆学报, 2016, 42(3): 27-38.
[26] (Xia Cuijuan, Liu Wei, Chen Tao, et al.A Genealogy Data Service Platform Implemented with Linked Data Technology[J]. Journal of Library Science in China, 2016, 42(3): 27-38.)
[27] 华东师范大学方志库[EB/OL].[2018-09-05]. .
[27] (Local Annals Database of East China Normal University Library[EB/OL]. [2018-09-05].
[28] 唐诗别苑[EB/OL]. [2018-09-05]. .
[28] (Garden of Tang Poetry[EB/OL]. [2018-09-05].
[29] Heim P, Hellmann S, Lehmann J, et al.RelFinder: Revealing Relationships in RDF Knowledge Bases[C]//Proceedings of International Conference on Semantic and Digital Media Technologies. Springer, Berlin, Heidelberg, 2009: 182-187.
[30] 石泽顺, 肖明. 基于RelFinder的图情学科关联数据语义关系发现实践[J]. 图书情报工作, 2017, 61(17): 139-148.
[30] (Shi Zeshun, Xiao Ming.The Semantic Relation Discovery Practice of Library and Information Science Linked Data Based on RelFinder[J]. Library and Information Service, 2017, 61(17): 139-148.)
[31] GraphDB[EB/OL]. [2018-09-05]. .
[1] Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[2] Shen Kejie, Huang Huanting, Hua Bolin. Constructing Knowledge Graph with Public Resumes[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[3] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[4] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[5] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[6] Zhang Qi,Jiang Chuan,Ji Youshu,Feng Minxuan,Li Bin,Xu Chao,Liu Liu. Unified Model for Word Segmentation and POS Tagging of Multi-Domain Pre-Qin Literature[J]. 数据分析与知识发现, 2021, 5(3): 2-11.
[7] Wang Qian,Wang Dongbo,Li Bin,Xu Chao. Deep Learning Based Automatic Sentence Segmentation and Punctuation Model for Massive Classical Chinese Literature[J]. 数据分析与知识发现, 2021, 5(3): 25-34.
[8] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[9] Zhao Yuxiang,Lian Jingwen. Review of Cultural Heritage Crowdsourcing in the Domain of Digital Humanities[J]. 数据分析与知识发现, 2021, 5(1): 36-55.
[10] Liang Jiwen,Jiang Chuan,Wang Dongbo. Chinese-English Sentence Alignment of Ancient Literature Based on Multi-feature Fusion[J]. 数据分析与知识发现, 2020, 4(9): 123-132.
[11] Xu Chenfei, Ye Haiying, Bao Ping. Automatic Recognition of Produce Entities from Local Chronicles with Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 86-97.
[12] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[13] Lv Huakui,Hong Liang,Ma Feicheng. Constructing Knowledge Graph for Financial Equities[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[14] Chen Ting,Wang Haiming,Wang Xiaomei. Detecting Funding Topics Evolutions with Visualization[J]. 数据分析与知识发现, 2020, 4(2/3): 60-67.
[15] Sun Xinrui,Meng Yu,Wang Wenle. Identifying Traffic Events from Weibo with Knowledge Graph and Target Detection[J]. 数据分析与知识发现, 2020, 4(12): 136-147.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938