Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (11): 99-107    DOI: 10.11925/infotech.2096-3467.2019.0412
Current Issue | Archive | Adv Search |
Chinese Sentiment Classification Method with Bi-LSTM and Grammar Rules
Qiang Lu,Zhenfang Zhu(),Fuyong Xu,Qiangqiang Guo
School of Information Science and Electrical Engineering, Shandong Jiaotong University, Ji’nan 250357, China
Download: PDF (588 KB)   HTML ( 20
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a new classification method based on grammar rules, aiming to improve the accuracy of sentiment analysis for Chinese texts. [Methods] Firstly, we combined the Chinese grammar rules with Bi-LSTM in the form of constraints and standardized the adjacent positions of sentences from the experimental corpus. Then, we generated the linguistic functions of non-emotional, emotional, negative, and degree words at sentence level. [Results] Compared with the RNN, LSTM and Bi-LSTM models, the accuracy of our model reached upto 91.2%. [Limitations] The experimental data was only collected from the hotel reviews. More research is needed to examine the performance of this model on other data sets. [Conclusions] The proposed method improves the accuracy of sentiment classification for Chinese.

Key wordsGrammar Rules      Sentiment Classification      Bi-LSTM     
Received: 22 April 2019      Published: 18 December 2019
ZTFLH:  TP391  
Corresponding Authors: Zhenfang Zhu     E-mail:

Cite this article:

Qiang Lu,Zhenfang Zhu,Fuyong Xu,Qiangqiang Guo. Chinese Sentiment Classification Method with Bi-LSTM and Grammar Rules. Data Analysis and Knowledge Discovery, 2019, 3(11): 99-107.

URL:     OR

参数名 参数值
正向中文情感词汇 11 229
负向中文情感词汇 10 783
否定词 59
程度词 219
实验环境 环境配置
操作系统 Windows7
CPU Intel E5-2640v4 2.40 GHz
内存 4×16GB
编程语言 Python 2.7
分词工具 Jieba 0.39
词嵌入工具 Word2Vec
参数名 参数值
词向量维度 300
隐藏层大小 300
学习率 0.01
Batch_Size 64
L2正则系数 0.001
模型 准确率
RNN 0.726
CNN 0.816
LSTM 0.821
Bi-LSTM 0.845
R-Bi-LSTM 0.912
模型 准确率
Bi-LSTM Model 0.881
Stacked Bi-LSTM Model 0.895
CNN-Bi-LSTM Model 0.901
Bi-LSTM-CRF Model 0.875
R-Bi-LSTM 0.912
[1] Titov I, McDonald R . Modeling Online Reviews with Multi-Grain Topic Models [C]// Proceedings of the 17th International Conference on World Wide Web. ACM, 2008: 111-120.
[2] 赵妍妍, 秦兵, 刘挺 . 文本情感分析[J]. 软件学报, 2010,21(8):1834-1848.
[2] ( Zhao Yanyan, Qin Bing, Liu Ting . Sentiment Analysis[J]. Journal of Software, 2010,21(8):1834-1848.)
[3] Hu M, Liu B . Mining and Summarizing Customer Reviews [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 168-177.
[4] Miller G A, Beckwith R, Fellbaum C , et al. Introduction to WordNet: An On-Line Lexical Database[J]. International Journal of Lexicography, 1990,3(4):235-244.
doi: 10.1093/ijl/3.4.235
[5] Zhang S, Wei Z, Wang Y , et al. Sentiment Analysis of Chinese Micro-Blog Text Based on Extended Sentiment Dictionary[J]. Future Generation Computer Systems, 2018,81:395-403.
doi: 10.1016/j.future.2017.09.048
[6] Graovac J, Mladenović M, Tanasijević I . NgramSPD: Exploring Optimal N-Gram Model for Sentiment Polarity Detection in Different Languages[J]. Intelligent Data Analysis, 2019,23(2):279-296.
doi: 10.3233/IDA-183879
[7] 李泽魁, 赵妍妍, 秦兵 , 等. 中文微博情感倾向性分析特征工程[J]. 山西大学学报: 自然科学版, 2014,37(4):570-578.
[7] ( Li Zekui, Zhao Yanyan, Qin Bing , et al. Feature Engineering for Chinese Microblog Sentiment Classification[J]. Journal of Shanxi University: Natural Science Edition, 2014,37(4):570-578.)
[8] Sidorov G . Vector Space Model for Texts and the TF-IDF Measure[A]// Sidorov G. Syntactic N-Grams in Computational Linguistics[M]. Springer, 2019: 11-15.
[9] Wang G, Shin S Y . An Improved Text Classification Method for Sentiment Classification[J]. Journal of Information and Communication Convergence Engineering, 2019,17(1):41-48.
doi: 10.1111/acer.13906 pmid: 30326140
[10] Bachhety S, Dhingra S, Jain R , et al. Improved Multinomial Naïve Bayes Approach for Sentiment Analysis on Social Media[J]. International Journal of Information Systems & Management Science, 2018,1(1).
doi: 10.1159/000504871 pmid: 31838480
[11] Manek A S, Shenoy P D, Mohan M C , et al. Aspect Term Extraction for Sentiment Analysis in Large Movie Reviews Using Gini Index Feature Selection Method and SVM Classifier[J]. World Wide Web, 2017,20(2):135-154.
doi: 10.1007/s11280-015-0381-x
[12] Pang B, Lee L, Vaithyanathan S . Thumbs up?: Sentiment Classification Using Machine Learning Techniques [C]// Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. ACL, 2002: 79-86.
[13] Shore J, Johnson R . Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy[J]. IEEE Transactions on Information Theory, 1980,26(1):26-37.
doi: 10.1109/TIT.1980.1056144
[14] 张庆庆, 刘西林 . 基于BPSO随机子空间的文本情感分类研究[J]. 数据分析与知识发现, 2017,1(5):71-81.
[14] ( Zhang Qingqing, Liu Xilin . Classifying Sentiments Based on BPSO Random Subspace[J]. Data Analysis and Knowledge Discovery, 2017,1(5):71-81.)
[15] Kim Y . Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint, arXiv: 1408.5882.
[16] Davidian D . Feed-forward Neural Network: USA, US5438646[P]. 1995-08-01.
[17] 李慧, 柴亚青 . 基于卷积神经网络的细粒度情感分析方法[J]. 数据分析与知识发现, 2019,3(1):95-103.
[17] ( Li Hui, Chai Yaqing . Fine-Grained Sentiment Analysis Based on Convolutional Neural Network[J]. Data Analysis and Knowledge Discovery, 2019,3(1):95-103.)
[18] Goldberg Y, Levy O . Word2Vec Explained: Deriving Mikolov et al. ’s Negative-Sampling Word-Embedding Method[OL]. arXiv Preprint, arXiv: 1402.3722.
[19] Rumelhart D E, Hinton G E, Williams R J . Learning Representations by Back-Propagating Errors[A]// Polk T A, Seifert C M. Cognitive Modeling[M]. 1988.
[20] Abdi A, Shamsuddin S M, Hasan S , et al. Deep Learning-Based Sentiment Classification of Evaluative Text Based on Multi-Feature Fusion[J]. Information Processing & Management, 2019,56(4):1245-1259.
doi: 10.1088/1361-6560/ab6240 pmid: 31842014
[21] Gers F A, Schmidhuber J, Cummins F . Learning to Forget: Continual Prediction with LSTM [C]// Proceedings of the 9th International Conference on Artificial Neural Networks. 1999: 850-855.
[22] Wang Y, Huang M, Zhao L . Attention-based LSTM for Aspect-level Sentiment Classification [C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016: 606-615.
[23] Lin J . Divergence Measures Based on the Shannon Entropy[J]. IEEE Transactions on Information Theory, 1991,37(1):145-151.
doi: 10.3390/e19120646 pmid: 30498328
[24] Pennington J, Socher R, Manning C . GloVe: Global Vectors for Word Representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2014: 1532-1543.
[25] 蔡慧苹, 王丽丹, 段书凯 . 基于Word Embedding和CNN的情感分类模型[J]. 计算机应用研究, 2016,33(10):2902-2905.
[25] ( Cai Huiping, Wang Lidan, Duan Shukai . Sentiment Classification Model Based on Word Embedding and CNN[J]. Application Research of Computers, 2016,33(10):2902-2905.)
[26] Byrkjeland M, De Lichtenberg F G, Gambäck B . Ternary Twitter Sentiment Classification with Distant Supervision and Sentiment-Specific Word Embeddings [C]// Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. 2018: 97-106.
[27] Duchi J, Hazan E, Singer Y . Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[J]. Journal of Machine Learning Research, 2011,12:2121-2159.
[28] Srivastava N, Hinton G, Krizhevsky A , et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
[29] Xu G, Meng Y, Qiu X , et al. Sentiment Analysis of Comment Texts Based on BiLSTM[J]. IEEE Access, 2019,7:51522-51532.
doi: 10.1109/Access.6287639
[30] Zhou J, Lu Y, Dai H N , et al. Sentiment Analysis of Chinese Microblog Based on Stacked Bidirectional LSTM[J]. IEEE Access, 2019,7:38856-38866.
doi: 10.1109/Access.6287639
[31] Zhou K, Long F . Sentiment Analysis of Text Based on CNN and Bi-Directional LSTM Model [C]// Proceedings of the 24th International Conference on Automation and Computing. IEEE, 2018: 1-5.
[32] Xiong H, Yan H, Zeng Z , et al. Dependency Parsing and Bidirectional LSTM-CRF for Aspect-level Sentiment Analysis of Chinese [C]// Proceedings of the 8th Joint International Semantic Technology Conference. 2018: 90-93.
[1] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[2] Hu Haotian,Ji Jinfeng,Wang Dongbo,Deng Sanhong. An Integrated Platform for Food Safety Incident Entities Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(3): 12-24.
[3] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[4] Qi Ruihua,Jian Yue,Guo Xu,Guan Jinghua,Yang Mingxin. Sentiment Analysis of Cross-Domain Product Reviews Based on Feature Fusion and Attention Mechanism[J]. 数据分析与知识发现, 2020, 4(12): 85-94.
[5] Qingqing Zhang,Xingshi He,Huimin Wang,Shengjun Meng. Text Sentiment Classification Based on Deep Belief Network[J]. 数据分析与知识发现, 2019, 3(4): 71-79.
[6] Lianjie Xiao,Tao Meng,Wei Wang,Zhixiang Wu. Entity Recognition of Intelligence Method Based on Deep Learning: Taking Area of Security Intelligence for Example[J]. 数据分析与知识发现, 2019, 3(10): 20-28.
[7] Hui Li,Yaqing Chai. Fine-Grained Sentiment Analysis Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2019, 3(1): 95-103.
[8] Feng Guoming,Zhang Xiaodong,Liu Suhui. DBLC Model for Word Segmentation Based on Autonomous Learning[J]. 数据分析与知识发现, 2018, 2(5): 40-47.
[9] Wang Shuyi,Liao Huatao,Wu Chake. Mining News on Competitors with Sentiment Classification[J]. 数据分析与知识发现, 2018, 2(3): 70-78.
[10] Zhang Qingqing,Liu Xilin. Classifying Sentiments Based on BPSO Random Subspace[J]. 数据分析与知识发现, 2017, 1(5): 71-81.
[11] Wang Xiaoyun,Yuan Yuan,Shi Lingling. Predicting Opening Weekend Box Office Prediction Based on Microblog[J]. 现代图书情报技术, 2016, 32(4): 31-39.
[12] Guo Shunli,Zhang Xiangxian. Building Sentiment Analysis Dictionary for Chinese Book Reviews[J]. 现代图书情报技术, 2016, 32(2): 67-74.
[13] Shao Jian, Zhang Chengzhi, Li Lei. Survey on Hashtag Mining and Its Application[J]. 现代图书情报技术, 2015, 31(10): 40-49.
[14] Bi Qiumin, Li Ming, Zeng Zhiyong. Semi-supervised Micro-blog Sentiment Classification Method Combining Active Learning and Co-training[J]. 现代图书情报技术, 2015, 31(1): 38-44.
[15] Xu Xin, Yu Fei, Zhang Li. A Method and Its Application of Text Semantic Orientation[J]. 现代图书情报技术, 2011, 27(10): 54-62.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938