Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (2/3): 134-142    DOI: 10.11925/infotech.2096-3467.2019.0721
Current Issue | Archive | Adv Search |
Predicting Remaining Business Time with Deep Transfer Learning
Liu Tong,Ni Weijian(),Sun Yujian,Zeng Qingtian
College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
Download: PDF (998 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] The paper tries to predict the remaining execution time of ongoing business process, aiming to provide better decision making support for process optimization.[Methods] We proposed a transfer learning framework for remaining time prediction, which constructed the prediction model with multi-layers recurrent neural networks. Then, we used representation learning method for events to pre-train the prediction model.[Results] We examined our model with five publicly available datasets and found the proposed approach outperforms the existing ones by 11% on average.[Limitations] The proposed model is of low interpretability, which limits its applications for real business management cases.[Conclusions] The proposed approach could help us predict remaining task processing time.

Key wordsRemaining Time Prediction      Business Process Instance      Deep Learning      Transfer Learning     
Received: 20 June 2019      Published: 26 April 2020
ZTFLH:  TP391  
Corresponding Authors: Weijian Ni     E-mail:

Cite this article:

Liu Tong,Ni Weijian,Sun Yujian,Zeng Qingtian. Predicting Remaining Business Time with Deep Transfer Learning. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 134-142.

URL:     OR

Framework of Remaining Time Prediction
Architecture of Bi-layer RNN
数据集 轨迹数量 事件数量 活动数量 轨迹最大长度 轨迹最小长度
BPIC2012_A 13 087 73 022 10 10 3
BPIC2012_O 5 015 41 728 7 39 4
BPIC2012_W 9 658 147 450 6 153 1
Helpdesk 3 804 13 710 9 14 1
Hospital_Billing 100 000 451 359 18 217 1
Statistics of Datasets
方法 BPIC2012_A BPIC2012_O BPIC2012_W Helpdesk Hospital_Billing
TS-set 7.505 8.429 7.392 6.283 51.456
TS-multiset 7.488 8.691 7.203 6.167 51.507
TS-sequence 7.488 8.619 9.612 6.192 51.504
SPN 8.880 8.516 6.385 6.337 78.018
LSTM 3.588 8.021 7.993 3.542 42.050
GRU 3.895 7.324 6.153 3.303 36.691
本文方法(LSTM) 3.489 5.858 5.826 3.357 33.201
本文方法(GRU) 3.512 7.306 6.338 2.677 32.227
Experiment Results
Results of Transfer Learning
Results of Pre-training
[1] van der Aalst W . Process Mining: Discovery, Conformance and Enhancement of Business Processes[M]. Springer, 2011.
[2] van der Aalst W, Schonenberg M H, Song M . Time Prediction Based on Process Mining[J]. Information Systems, 2011,36(2):450-475.
[3] 赵海燕, 李帅标, 陈庆奎 , 等. 面向业务过程的时间预测方法[J]. 小型微型计算机系统, 2019,40(2):280-286.
[3] ( Zhao Haiyan, Li Shuaibiao, Chen Qingkui , et al. Method of Time Prediction for Business Process[J]. Journal of Chinese Computer Systems, 2019,40(2):280-286.)
[4] Rogge-Solti A, Weske M . Prediction of Business Process Durations Using Non-Markovian Stochastic Petri Nets[J]. Information Systems, 2015,54:1-14.
[5] Verenich I, Nguyen H, La Rosa M , et al. White-box Prediction of Process Performance Indicators via Flow Analysis [C]//Proceedings of the 2017 International Conference on Software and System Process. ACM, 2017: 85-94.
[6] Tax N, Verenich I, La Rosa M , et al. Predictive Business Process Monitoring with LSTM Neural Networks [C]//Proceedings of the 29th International Conference on Advanced Information Systems Engineering. Springer, 2017: 477-492.
[7] Navarin N, Vincenzi B, Polato M , et al. LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances [C]//Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence. IEEE, 2017: 1-7.
[8] Verenich I, Dumas M, La Rosa M , et al. Survey and Cross-benchmark Comparison of Remaining Time Prediction Methods in Business Process Monitoring[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(4): Article No. 34.
[9] Polato M, Sperduti A, Burattin A , et al. Time and Activity Sequence Prediction of Business Process Instances[J]. Computing, 2018,100(9):1005-1031.
[10] Jimenez-Ramirez A, Barba I, Fernandez-Olivares J , et al. Time Prediction on Multi-Perspective Declarative Business Processes[J]. Knowledge and Information Systems, 2018,57(3):655-684.
[11] Senderovich A, Weidlich M, Gal A , et al. Queue Mining for Delay Prediction in Multi-Class Service Processes[J]. Information Systems, 2015,53:278-295.
[12] Bevacqua A, Carnuccio M, Folino F , et al. A Data-driven Prediction Framework for Analyzing and Monitoring Business Process Performances [C]//Proceedings of the 15th International Conference on Enterprise Information Systems. Springer, 2013: 100-117.
[13] Senderovich A, Di Francescomarino C, Ghidini C , et al. Intra and Inter-Case Features in Predictive Process Monitoring: A Tale of Two Dimensions [C]//Proceedings of the 15th International Conference on Business Process Management. Springer, 2017: 306-323.
[14] Leontjeva A, Conforti R, Di Francescomarino C , et al. Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes [C]//Proceedings of the 13th International Conference on Business Process Management. Springer, 2015: 297-313.
[15] Hochreiter S, Schmidhuber J . Long Short-Term Memory[J]. Neural Computation, 1997,9(8):1735-1780.
[16] Cho K, Van Merriënboer B, Bahdanau D , et al. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches[OL]. arXiv Preprint, arXiv:1409.1259.
[17] Chung J, Gulcehre C, Cho K H , et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[OL]. arXiv Preprint, arXiv:1412.3555.
[18] Radford A, Narasimhan K, Salimans T , et al. Improving Language Understanding with Unsupervised Learning[R]. OpenAI, 2018.
[19] Mikolov T, Sutskever I, Chen K , et al. Distributed Representations of Words and Phrases and Their Compositionality [C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013: 3111-3119.
[1] Huang Lu,Zhou Enguo,Li Daifeng. Text Representation Learning Model Based on Attention Mechanism with Task-specific Information[J]. 数据分析与知识发现, 2020, 4(9): 111-122.
[2] Zhao Yang, Zhang Zhixiong, Liu Huan, Ding Liangping. Classification of Chinese Medical Literature with BERT Model[J]. 数据分析与知识发现, 2020, 4(8): 41-49.
[3] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[4] Xu Chenfei, Ye Haiying, Bao Ping. Automatic Recognition of Produce Entities from Local Chronicles with Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 86-97.
[5] Wang Xinyun,Wang Hao,Deng Sanhong,Zhang Baolong. Classification of Academic Papers for Periodical Selection[J]. 数据分析与知识发现, 2020, 4(7): 96-109.
[6] Jiao Qihang,Le Xiaoqiu. Generating Sentences of Contrast Relationship[J]. 数据分析与知识发现, 2020, 4(6): 43-50.
[7] Wang Mo,Cui Yunpeng,Chen Li,Li Huan. A Deep Learning-based Method of Argumentative Zoning for Research Articles[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[8] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[9] Deng Siyi,Le Xiaoqiu. Coreference Resolution Based on Dynamic Semantic Attention[J]. 数据分析与知识发现, 2020, 4(5): 46-53.
[10] Yu Chuanming,Yuan Sai,Zhu Xingyu,Lin Hongjun,Zhang Puliang,An Lu. Research on Deep Learning Based Topic Representation of Hot Events[J]. 数据分析与知识发现, 2020, 4(4): 1-14.
[11] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[12] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[13] Da Jingwei,Yan Jiaqi,Deng Sanhong,Wang Zhongmin. Predicting Hospital Readmissions with Deep Learning: Case Study of Heart Diseases[J]. 数据分析与知识发现, 2020, 4(11): 63-73.
[14] Cai Jingxuan,Wu Jiang,Wang Chengkun. Predicting Usefulness of Crowd Testing Reports with Deep Learning[J]. 数据分析与知识发现, 2020, 4(11): 102-111.
[15] Ding Heng,Li Yingxuan. Improving Online Q&A Service with Deep Learning[J]. 数据分析与知识发现, 2020, 4(10): 37-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938