Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (1): 1-11    DOI: 10.11925/infotech.2096-3467.2019.0769
Current Issue | Archive | Adv Search |
A Survey of Sentiment Analysis on Social Media
Ying Tan1(),Jin Zhang2,Lixin Xia1
1School of Information Management, Central China Normal University, Wuhan 430079, China
2School of Information Studies, University of Wisconsin-Milwaukee, Milwaukee 53211, United State
Download: PDF (756 KB)   HTML ( 81
Export: BibTeX | EndNote (RIS)      

[Objective] This paper investigates recent researches addressing sentiment analysis on social media.[Coverage] 163 papers in total are collected and 91 articles are cited for this review, covering articles subject on social media and sentiment analysis retrieved from Web of Science Core Collection during 2015-2019, and a supplement from citation analysis and browsing.[Methods] Content analysis is used for exploring task, technology, and application of sentiment analysis on social media.[Results] A variety of sentiment analysis tasks are summarized, refine sentiment analysis techniques on social media platforms are clarified, application fields are discussed as well.[Limitations] There is no in-depth analysis of the step and procedure for the sentiment analysis algorithm.[Conclusions] The findings provide an overview of sentiment analysis study, including the state-of-the-art technique, application and challenges on social media platforms.

Key wordsSocial Media      Sentiment Analysis      Sentiment Analysis Task     
Received: 27 June 2019      Published: 14 March 2020
ZTFLH:  TP391.1  
Corresponding Authors: Ying Tan     E-mail:

Cite this article:

Ying Tan,Jin Zhang,Lixin Xia. A Survey of Sentiment Analysis on Social Media. Data Analysis and Knowledge Discovery, 2020, 4(1): 1-11.

URL:     OR

Sentiment Classification Techniques
[1] CNNIC. 第43次中国互联网络发展状况统计报告[R]. 中国互联网络信息中心, 2018.
[1] ( CNNIC. The Report of the 43th China Internet Development Statistics[R]. InformationCenter of the China Internet Network, 2018.)
[2] Liu B. Sentiment Analysis and Subjectivity[C]. In: Handbook of Natural Language Processing, 2010: 627-666.
[3] Jindal N, Liu B. Identifying Comparative Sentences in Text Documents [C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 244-251.
[4] Jindal N, Liu B. Mining Comparative Sentences and Relations [C]// Proceedings of the 21st National Conference on Artificial Intelligence. 2006: 1331-1336.
[5] Qazi A, Raj R G, Tahir M , et al. A Preliminary Investigation of User Perception and Behavioral Intention for Different Review Types: Customers and Designers Perspective[J]. The Scientific World Journal, 2014: Article No. 872929.
[6] Pang B, Lee L . Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008,2(1-2):1-135.
[7] Li S T, Tsai F C . A Fuzzy Conceptualization Model for Text Mining with Application in Opinion Polarity Classification[J]. Knowledge-Based Systems, 2013,39:23-33.
[8] Martín-Valdivia M T, Martínez-Cámara E, Perea-Ortega J M , et al. Sentiment Polarity Detection in Spanish Reviews Combining Supervised and Unsupervised Approaches[J]. Expert Systems with Applications, 2013,40(10):3934-3942.
[9] Socher R, Perelygin A, Wu J Y, et al. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank [C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 2013: 1631-1642.
[10] Thelwall M, Buckley K, Paltoglou G . Sentiment Strength Detection for the Social Web[J]. Journal of the American Society for Information Science and Technology, 2012,63(1):163-173.
[11] Cornelius R R . The Science of Emotion: Research and Tradition in the Psychology of Emotions[M]. US: Prentice-Hall, 1996.
[12] Bollen J, Mao H, Pepe A. Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena Johan [C]// Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. 2011: 450-453.
[13] Plutchik R . A General Psychoevolutionary Theory of Emaotion[A]//Plutchik R, Kellerman H. Theories of Emotion[M]. 1980: 3-33.
[14] Wang C, Wang D, Feng S, et al. An Approach of Fuzzy Relation Equation and Fuzzy-rough Set for Multi-label Emotion Intensity Analysis [C]// Proceedings of the 2016 International Conference on Database Systems for Advanced Applications. Springer, 2016: 65-80.
[15] Li L, Wu Y, Zhang Y , et al. Time+User Dual Attention Based Sentiment Prediction for Multiple Social Network Texts with Time Series[J]. IEEE Access, 2019,7:17644-17653.
[16] Thelwall M, Buckley K, Paltoglou G . Sentiment in Twitter Events[J]. Journal of the American Society for Information Science and Technology, 2011,62(2):406-418.
[17] Raaijmakers S, Kraaij W. A Shallow Approach to Subjectivity Classification [C]// Proceedings of the 2008 International AAAI Conference on Weblogs and Social Media. 2008: 216-217.
[18] Montoyo A, Martínez-Barco P, Balahur A . Subjectivity and Sentiment Analysis: An Overview of the Current State of the Area and Envisaged Developments[J]. Decision Support Systems, 2012,53(4):675-679.
[19] Beineke P, Hastie T, Manning C, et al. Exploring Sentiment Summarization [C]// Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text Theories and Applications. 2004,7:12-15.
[20] Pang B, Lee L. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts [C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. USA: Association for Computational Linguistics, 2004.
[21] Wang D, Zhu S, Li T . SumView: A Web-based Engine for Summarizing Product Reviews and Customer Opinions[J]. Expert Systems with Applications, 2013,40(1):27-33.
[22] Hu M, Liu B. Mining and Summarizing Customer Reviews [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM, 2004: 168-177.
[23] Jalaja G, Kavitha C . Sentiment Analysis for Text Extracted from Twitter[A]// Krishna A N, Srikantaiah K C, Naveena C. Integrated Intelligent Computing, Communication and Security[M]. Springer, 2019: 693-700.
[24] He B, Macdonald C, He J, et al. An Effective Statistical Approach to Blog Post Opinion Retrieval [C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM, 2008: 1063-1072.
[25] Guo L, Wan X . Exploiting Syntactic and Semantic Relationships Between Terms for Opinion Retrieval[J]. Journal of the American Society for Information Science and Technology, 2012,63(11):2269-2282.
[26] Liu B. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions[M]. Cambridge University Press, 2015.
[27] Seki Y, Kando N, Aono M . Multilingual Opinion Holder Identification Using Author and Authority Viewpoints[J]. Information Processing and Management, 2009,45(2):189-199.
[28] Yang B, Cardie C. Joint Inference for Fine-grained Opinion Extraction [C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013,1:1640-1649.
[29] Filatova E. Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing [C]// Proceedings of the 8th Edition of the Language Resources and Evaluation Conferences. 2012: 392-398.
[30] Reyes A, Rosso P, Buscaldi D . From Humor Recognition to Irony Detection: The Figurative Language of Social Media[J]. Data and Knowledge Engineering, 2012,74:1-12.
[31] Reyes A, Rosso P . Making Objective Decisions from Subjective Data: Detecting Irony in Customer Reviews[J]. Decision Support Systems, 2012,53(4):754-760.
[32] Pan S J, Ni X, Sun JT, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment [C]// Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 751-760.
[33] Bollegala D, Mu T, Goulermas J Y . Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,28(2):398-410.
[34] Al-Moslmi T, Omar N, Abdullah S , et al. Approaches to Cross-Domain Sentiment Analysis: A Systematic Literature Review[J]. IEEE Access, 2017,5:16173-16192.
[35] Soleymani M, Garcia D, Jou B , et al. A Survey of Multimodal Sentiment Analysis[J]. Image and Vision Computing, 2017,65:3-14.
[36] Xu N, Mao W. A Residual Merged Neutral Network for Multimodal Sentiment Analysis [C]// Proceedings of the IEEE 2nd International Conference on Big Data Analysis. 2017: 6-10.
[37] Poria S, Cambria E, Gelbukh A. Deep Convolutional Neural Network Textual Features and Multiple Kernel Learning for Utterance-level Multimodal Sentiment Analysis [C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 2539-2544.
[38] Ahmed S, Hina S, Asif R . Detection of Sentiment Polarity of Unstructured Multi-Language Text from Social Media[J]. International Journal of Advanced Computer Science and Applications, 2018,9(7):199-203.
[39] Haripriya A, Kumari S, Babu C N. Location Based Real-time Sentiment Analysis of Top Trending Event Using Hybrid Approach [C]// Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics. 2018: 1052-1057.
[40] Mukherjee A, Liu B, Glance N. Spotting Fake Reviewer Groups in Consumer Reviews [C]// Proceedings of the 21st International Conference on World Wide Web. USA: ACM, 2012: 191-200.
[41] Zimbra D, Abbasi A, Zeng D , et al. The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation[J]. ACM Transactions on Management Information Systems, 2018, 9(2): Article No. 5.
[42] Sun S, Luo C, Chen J . A Review of Natural Language Processing Techniques for Opinion Mining Systems[J]. Information Fusion, 2017,36:10-25.
[43] Ahmad M, Aftab S, Bashir M S , et al. Sentiment Analysis Using SVM: A Systematic Literature Review[J]. International Journal of Advanced Computer Science and Applications, 2018,9(2):182-188.
[44] Zhang L, Wang S, Liu B . Deep Learning for Sentiment Analysis: A Survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018,8(4):e1253.
[45] Feldman R . Techniques and Applications for Sentiment Analysis[J]. Communications of the ACM, 2013,56(4):82-89.
[46] Medhat W, Hassan A, Korashy H . Sentiment Analysis Algorithms and Applications: A Survey[J]. Ain Shams Engineering Journal, 2014,5(4):1093-1113.
[47] Petz G, Karpowicz M, Fürschuß H , et al. Reprint of: Computational Approaches for Mining User’s Opinions on the Web 2.0[J]. Information Processing and Management, 2015,51(4):510-519.
[48] Singh T, Kumari M . Role of Text Pre-processing in Twitter Sentiment Analysis[J]. Procedia Computer Science, 2016,89:549-554.
[49] Baccianella S, Esuli A, Sebastiani F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining [C]// Proceedings of the International Conference on Language Resources and Evaluation. 2010,10:2200-2204.
[50] Saif H, Fernandez M, Kastler L , et al. Sentiment Lexicon Adaptation with Context and Semantics for the Social Web[J]. Semantic Web, 2017,8(5):643-665.
[51] Khan F H, Qamar U, Bashir S . A Semi-Supervised Approach to Sentiment Analysis Using Revised Sentiment Strength Based on SentiWordNet[J]. Knowledge and Information Systems, 2017,51(3):851-872.
[52] Hung C . Word of Mouth Quality Classification Based on Contextual Sentiment Lexicons[J]. Information Processing & Management, 2017,53(4):751-763.
[53] Feng S, Song K, Wang D , et al. A Word-Emoticon Mutual Reinforcement Ranking Model for Building Sentiment Lexicon from Massive Collection of Microblogs[J]. World Wide Web, 2015,18(4):949-967.
[54] Chenlo J M, Losada D E . An Empirical Study of Sentence Features for Subjectivity and Polarity Classification[J]. Information Sciences, 2014,280:275-288.
[55] Singh J, Singh G, Singh R . Optimization of Sentiment Analysis Using Machine Learning Classifiers[J]. Human-centric Computing and Information Sciences, 2017, 7(1): Article No. 32.
[56] Socher R, Pennington J, Huang E H, et al. Semi-supervised Recursive Autoencoders for Predicting Sentiment Distributions [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. USA: Association for Computational Linguistics, 2011: 151-161.
[57] Er M J, Liu F, Wang N, et al. User-Level Twitter Sentiment Analysis with a Hybrid Approach [C]// Proceedings of the 13th International Symposium on Neural Networks. 2016: 426-433.
[58] Choi Y, Lee H . Data Properties and the Performance of Sentiment Classification for Electronic Commerce Applications[J]. Information Systems Frontiers, 2017,19(5):993-1012.
[59] Hassan A, Abbasi A, Zeng D. Twitter Sentiment Analysis: A Bootstrap Ensemble Framework [C]//Proceedings of the 2013 International Conference on Social Computing. 2013: 357-364.
[60] Mikolov T, Chen K, Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301. 3781.
[61] Shirani-Mehr H . Applications of Deep Learning to Sentiment Analysis of Movie Reviews[R]. Stanford University, 2014.
[62] Panthati J, Bhaskar J, Ranga T K, et al. Sentiment Analysis of Product Reviews Using Deep Learning [C]// Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics. 2018: 2408-2414.
[63] Yang D, Huang C, Wang M . A Social Recommender System by Combining Social Network and Sentiment Similarity: A Case Study of Healthcare[J]. Journal of Information Science, 2017,43(5):635-648.
[64] Zheng K, Li A, Farzan R. Exploration of Online Health Support Groups Through the Lens of Sentiment Analysis [C]// Proceedings of the 13th International Conference on Information. Springer, 2018: 145-151.
[65] Reguera N, Subirats L, Armayones M. Mining Facebook Data of People with Rare Diseases [C]// Proceedings of the IEEE 30th International Symposium on Computer-Based Medical Systems. IEEE, 2017: 588-593.
[66] Tepe N A, Demirci S. Investigating Sentimental Relation Between Stress and Heart Disease Mortality [C]// Proceedings of the 2017 International Conference on Computer Science and Engineering. IEEE, 2017: 677-681.
[67] Hassan A U, Hussain J, Hussain M, et al. Sentiment Analysis of Social Networking Sites (SNS) Data Using Machine Learning Approach for the Measurement of Depression [C]// Proceedings of the 2017 International Conference on Information and Communication Technology Convergence. IEEE, 2017: 138-140.
[68] Cohan A, Young S, Yates A , et al. Triaging Content Severity in Online Mental Health Forums[J]. Journal of the Association for Information Science and Technology, 2017,68(11):2675-2689.
[69] Akay A, Dragomir A, Erlandsson BE . Network-Based Modeling and Intelligent Data Mining of Social Media for Improving Care[J]. IEEE Journal of Biomedical and Health Informatics, 2014,19(1):210-218.
[70] Abirami A M, Askarunisa A . Sentiment Analysis Model to Emphasize the Impact of Online Reviews in Healthcare Industry[J]. Online Information Review, 2017,41(4):471-486.
[71] Ali K, Dong H, Bouguettaya A, et al. Sentiment Analysis as a Service: A Social Media Based Sentiment Analysis Framework [C]// Proceedings of the 2017 IEEE International Conference on Web Services. IEEE, 2017: 660-667.
[72] Huang Y, Hlongwane N, Kao L. Using Sentiment Analysis to Determine Users’ Likes on Twitter [C]//Proceedings of the IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress. 2018: 1068-1073.
[73] Shukri S E, Yaghi R I, Aljarah I, et al. Twitter Sentiment Analysis: A Case Study in the Automotive Industry [C]//Proceedings of the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies. 2015: 1-5.
[74] Thakor P, Sasi S . Ontology-Based Sentiment Analysis Process for Social Media Content[J]. Procedia Computer Science, 2015,53(1):199-207.
[75] Sabariah M K, Effendy V. Sentiment Analysis on Twitter Using the Combination of Lexicon-Based and Support Vector Machine for Assessing the Performance of a Television Program [C]//Proceedings of the 3rd International Conference on Information and Communication Technology. 2015: 386-390.
[76] Dragoni M. Computational Advertising in Social Networks: An Opinion Mining-based Approach [C]// Proceedings of the 33rd Annual ACM Symposium on Applied Computing. USA: ACM, 2018: 1798-1804.
[77] Osman N A, Noah S A M. Sentiment-Based Model for Recommender Systems [C]// Proceedings of the 4thInternational Conference on Information Retrieval and Knowledge Management. 2018: 1-6.
[78] Wu CY, Diao Q, Qiu M, et al. Jointly Modeling Aspects, Ratings and Sentiments for Movie Recommendation [C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA: ACM, 2014: 193-202.
[79] Ho C S, Damien P, Gu B , et al. The Time-varying Nature of Social Media Sentiments in Modeling Stock Returns[J]. Decision Support Systems, 2017,101:69-81.
[80] Zhang G, Xu L, Xue Y . Model and Forecast Stock Market Behavior Integrating Investor Sentiment Analysis and Transaction Data[J]. Cluster Computing, 2017,20(1):789-803.
[81] Schumaker R P, Labedz C S, Jarmoszko A T , et al. Prediction from Regional Angst—A Study of NFL Sentiment in Twitter Using Technical Stock Market Charting[J]. Decision Support Systems, 2017,98:80-88.
[82] Oussalah M, Zaidi A. Forecasting Weekly Crude Oil Using Twitter Sentiment of U.S. Foreign Policy and Oil Companies Data [C]// Proceedingsof the 2018 IEEE International Conference on Information Reuse and Integration. 2018: 201-208.
[83] Pai P, Liu C . Predicting Vehicle Sales by Sentiment Analysis of Twitter Data and Stock Market Values[J]. IEEE Access, 2018,6:57655-57662.
[84] Ding C, Cheng H K, Duan Y , et al. The Power of the “Like” Button: The Impact of Social Media on Box Office[J]. Decision Support Systems, 2017,94:77-84.
[85] Seki Y. Use of Twitter for Analysis of Public Sentiment for Improvement of Local Government Service [C]// Proceedings of the 2016 IEEE International Conference on Smart Computing. IEEE, 2016: 1-3.
[86] Mirani T B, Sasi S. Sentiment Analysis of ISIS Related Tweets Using Absolute Location [C]// Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence. 2016: 1140-1145.
[87] Ceron A, Curini L, Iacus S M . Using Sentiment Analysis to Monitor Electoral Campaigns: Method Matters——Evidence From the United States and Italy[J]. Social Science Computer Review, 2014,33(1):3-20.
[88] Gitari N D, Zuping Z, Damien H , et al. A Lexicon-Based Approach for Hate Speech Detection[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015,10(4):215-230.
[89] Paltoglou G . Sentiment-Based Event Detection in Twitter[J]. Journal of the Association for Information Science and Technology, 2016,67(7):1576-1587.
[90] Preethi P G, Uma V . Temporal Sentiment Analysis and Causal Rules Extraction from Tweets for Event Prediction[J]. Procedia Computer Science, 2015,48:84-89.
[91] Ijaz S, Lali M I, Shahzad B, et al. Biasness Identification of Talk Show’s Host by Using Twitter Data [C]// Proceedings of the 13th International Conference on Emerging Technologies. IEEE, 2017: 1-6.
[1] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[2] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[3] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[4] Zhong Jiawa,Liu Wei,Wang Sili,Yang Heng. Review of Methods and Applications of Text Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[5] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[6] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[7] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[8] Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network[J]. 数据分析与知识发现, 2021, 5(4): 72-79.
[9] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[10] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[11] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
[12] Lv Huakui,Liu Zhenghao,Qian Yuxing,Hong Xudong. Relationship Between Financial News and Stock Market Fluctuations[J]. 数据分析与知识发现, 2021, 5(1): 99-111.
[13] Liu Qian, Li Chenliang. A Survey of Topic Evolution on Social Media[J]. 数据分析与知识发现, 2020, 4(8): 1-14.
[14] Li Gang, Guan Weidong, Ma Yaxue, Mao Jin. Predicting Social Media Visibility of Scholarly Articles[J]. 数据分析与知识发现, 2020, 4(8): 63-74.
[15] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938