Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (5): 92-104    DOI: 10.11925/infotech.2096-3467.2019.1080
Current Issue | Archive | Adv Search |
Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts
Zheng Songyin,Tan Guoxin(),Shi Zhongchao
National Research Center of Cultural Industries, Central China Normal University, Wuhan 430079, China
Download: PDF (1527 KB)   HTML ( 11
Export: BibTeX | EndNote (RIS)      

[Objective] This study tries to provide personalized recommendations for tourists, aiming to improve the low efficiency of user decision-making due to information overload.[Methods] We proposed a new SPT (user Similarity, Popular spot and Time) algorithm, and used real data from Ctrip to compare its recommendation results with traditional algorithms. We also proposed a method to construct training set based on “segmented user groups” and examined its impacts on the recommendation results.[Results] The SPT algorithm yielded better results than traditional recommendation methods in precision, recall, coverage and popularity. The algorithm based on “segmented user groups” further improved the effectiveness of recommendation. The precision and recall of the proposed algorithm reached 43.75% and 61.59%.[Limitations] The algorithm could not find similar users for new users. Our new method requires further testing with more datasets.[Conclusions] The proposed method improves recommendation results of tourism attractions, as well as tourists’ decision-making and personalized services.

Key wordsAttractions Recommendation      Segmented User Groups      Time Contexts      Collaborative Filtering      Personalized Tourism     
Received: 27 September 2019      Published: 15 June 2020
ZTFLH:  TP391 G35  
Corresponding Authors: Tan Guoxin     E-mail:

Cite this article:

Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts. Data Analysis and Knowledge Discovery, 2020, 4(5): 92-104.

URL:     OR

Tourist Attractions Recommendation Model Based on Segmented User Group and Time Context
No. userId attractions content date score
1 奥拉尔维沃宋玉 武汉大学 可以趁櫻花季的時候去看… 2019-07-19 4
2 出去玩呢 武汉大学 武汉大学确实很大… 2019-07-19 4
3 奥拉尔维沃宋玉 武汉大学 春天的櫻花很美很漂亮… 2019-07-19 4
45504 DOSMO 武汉玛雅海滩水公园 亲们去玛雅一定得自带拖鞋… 2013-07-13 4
45505 DOSMO 武汉玛雅海滩水公园 总体说这次游玩还是不错的… 2013-07-13 5
Original Dataset
No. userId attractions date score
1 奥拉尔维沃宋玉 武汉大学 07 4
2 出去玩呢 武汉大学 07 4
3 奥拉尔维沃宋玉 武汉大学 07 4
45504 DOSMO 武汉玛雅海滩水公园 07 4
45505 DOSMO 武汉玛雅海滩水公园 07 5
Original Dataset After Preliminary Processing
No. userId attractions month score num
1 300****030 武汉大学 3 5 43
2 300****030 黄鹤楼 5 5 43
3 300****030 武汉欢乐谷 2 5 43
39438 **2345kk 东湖游船 10 4 1
39439 **-游-客 木兰山 10 5 1
Experimental Dataset After Preprocessing
月份 评论数占比(%) 月份 评论数占比(%)
1月 4.47 7月 8.67
2月 6.35 8月 8.48
3月 9.82 9月 7.40
4月 11.73 10月 12.49
5月 11.17 11月 6.04
6月 8.37 12月 5.00
Proportion of Reviews in Different Months
Popularity of Some Attractions in Different Months
Popularity of Some Attractions Among Segmented User Group
推荐算法 准确率(%) 召回率(%) 覆盖率(%) 平均流行度
Random 19.41 27.33 100.00 3.059 377
Popular 41.99 59.11 58.82 3.866 054
ScoreCF 25.86 26.60 98.04 3.357 215
UserCF 42.72 60.14 62.75 3.848 093
UserIIF 42.94 60.46 60.78 3.854 983
SPT 43.38 61.08 64.71 3.831 839
Performance Comparison of Different Recommendation Algorithms (Top10)
Top-N 准确率(%) 召回率(%) 覆盖率(%) 平均流行度
5 54.85 38.61 49.02 3.993 657
10 43.38 61.08 64.71 3.831 839
15 35.29 74.53 80.39 3.707 977
20 29.41 82.82 92.16 3.576 896
25 28.20 78.88 100.00 3.421 675
Performance of SPT Algorithm with Different Top-N
Performance of Different Algorithms Under Segmented User Group (Top10)
[1] 中华人民共和国文化与旅游部.2018年旅游市场基本情况[EB/OL]. [ 2019- 02- 12].
[1] ( Ministry of Culture and Tourism of the People’s Republic of China. Basic Situation of Tourism Market in 2018[EB/OL]. [ 2019- 02- 12].
[2] 乔向杰, 张凌云. 近十年国外旅游推荐系统的应用研究[J]. 旅游学刊, 2014,29(8):117-127.
[2] ( Qiao Xiangjie, Zhang Lingyun. Overseas Applied Studies on Travel Recommender Systems in the Past Ten Years[J]. Tourism Tribune, 2014,29(8):117-127.)
[3] 匡海丽, 常亮, 宾辰忠, 等. 上下文感知旅游推荐系统研究综述[J]. 智能系统学报, 2019,14(4):611-618.
[3] ( Kuang Haili, Chang Liang, Bin Chenzhong, et al. Review of a Context-aware Travel Recommendation System[J]. CAAI Transactions on Intelligent Systems, 2019,14(4):611-618.)
[4] Fenza G, Fischetti E, Furno D , et al. A Hybrid Context Aware System for Tourist Guidance Based on Collaborative Filtering [C]// Proceedings of the 2011 IEEE International Conference on Fuzzy Systems. 2011.
[5] Alptekin G I, Büyüközkan G. An Integrated Case-based Reasoning and MCDM System for Web Based Tourism Destination Planning[J]. Expert Systems with Applications, 2011,38(3):2125-2132.
doi: 10.1016/j.eswa.2010.07.153
[6] Hsu F M, Lin Y T, Ho T K. Design and Implementation of an Intelligent Recommendation System for Tourist Attractions: The Integration of EBM Model, Bayesian Network and Google Maps[J]. Expert Systems with Applications, 2012,39(3):3257-3264.
doi: 10.1016/j.eswa.2011.09.013
[7] Nilashi M, bin Ibrahim O, Ithnin N, et al. A Multi-criteria Collaborative Filtering Recommender System for the Tourism Domain Using Expectation Maximization (EM) and PCA-ANFIS[J]. Electronic Commerce Research and Applications, 2015,14(6):542-562.
[8] Moreno A, Valls A, Isern D, et al. Sigtur/e-destination: Ontology-based Personalized Recommendation of Tourism and Leisure Activities[J]. Engineering Applications of Artificial Intelligence, 2013,26(1):633-651.
[9] Dodwad P R, Lobo L. A Context-aware Recommender System Using Ontology Based Approach for Travel Applications[J]. International Journal of Advanced Engineering and Nano Technology, 2014,1(10):8-12.
[10] Niaraki A S, Kim K. Ontology Based Personalized Route Planning System Using a Multi-criteria Decision Making Approach[J]. Expert Systems with Applications, 2009,36(2):2250-2259.
doi: 10.1016/j.eswa.2007.12.053
[11] Al-Hassan M, Lu H, Lu J. A Semantic Enhanced Hybrid Recommendation Approach: A Case Study of e-Government Tourism Service Recommendation System[J]. Decision Support Systems, 2015,72:97-109.
[12] Borràs J, Moreno A, Valls A. Intelligent Tourism Recommender Systems: A Survey[J]. Expert Systems with Applications, 2014,41(16):7370-7389.
[13] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.
[13] ( Xiang Liang. Recommendation System Practice[M]. Beijing: Posts and Telecommunications Press, 2012.)
[14] Noguera J M, Barranco M J, Segura R J, et al. A Mobile 3D-GIS Hybrid Recommender System for Tourism[J]. Information Sciences, 2012,215:37-52.
[15] Horozov T, Narasimhan N, Vasudevan V . Using Location for Personalized POI Recommendations in Mobile Environments [C]// Proceedings of the 2006 International Symposium on Applications and the Internet (SAINT’06). IEEE, 2006.
[16] 李广丽, 朱涛, 滑瑾, 等. 混合分层抽样统计与贝叶斯个性化排序的旅游景点推荐模型研究[J]. 华中师范大学学报:自然科学版, 2019,53(2):214-220.
[16] ( Li Guangli, Zhu Tao, Hua Jin, et al. Hybrid Recommendation System for Tourist Spots Based on Hierarchical Sampling Statistics and Bayesian Personalized Ranking[J]. Journal of Central China Normal University: Natural Sciences, 2019,53(2):214-220.)
[17] 王志强, 文益民, 李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报: 工学版, 2016,47(6):54-61.
[17] ( Wang Zhiqiang, Wen Yimin, Li Fang. Collaborative Recommendation for Scenic Based on Multi-aspect Ratings[J]. Journal of Shandong University: Engineering Sciences, 2016,47(6):54-61.)
[18] 李雅美, 王昌栋. 基于标签的个性化旅游推荐[J]. 中国科学技术大学学报, 2017,47(7):547-555.
[18] ( Li Yamei, Wang Changdong. Tag-based Personalized Travel Recommendation[J]. Journal of University of Science and Technology of China, 2017,47(7):547-555.)
[19] Liu Q, Chen E, Xiong H, et al. A Cocktail Approach for Travel Package Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,26(2):278-293.
doi: 10.1109/TKDE.2012.233
[20] Segaran T. 集体智慧编程[M]. 莫映, 王开福译. 北京:电子工业出版社, 2009.
[20] ( Segaran T. Programming Collective Intelligence[M]. Translated by Mo Ying, Wang Kaifu. Beijing: Publishing House of Electronics Industry, 2009.)
[21] 武永亮, 赵书良, 李长镜, 等. 基于TF-IDF和余弦相似度的文本分类方法[J]. 中文信息学报, 2017,31(5):138-145.
[21] ( Wu Yongliang, Zhao Shuliang, Li Changjing, et al. Text Classification Method Based on TF-IDF and Cosine Similarity[J]. Journal of Chinese Information Processing, 2017,31(5):138-145.)
[22] Breese J S, Heckerman D, Kadie C . Empirical Analysis of Predictive Algorithms for Collaborative Filtering [C]// Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998.
[23] 俞婷婷, 徐彭娜, 江育娥, 等. 基于改进的Jaccard系数文档相似度计算方法[J]. 计算机系统应用, 2017,26(12):137-142.
[23] ( Yu Tingting, Xu Pengna, Jiang Yu’e, et al. Text Similarity Method Based on the Improved Jaccard Coefficient[J]. Computer Systems and Applications, 2017,26(12):137-142.)
[24] Wang C, Song Y, Li H , et al. Distant Meta-path Similarities for Text-based Heterogeneous Information Networks [C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. ACM, 2017: 1629-1638.
[25] Levy M, Bosteels K . Music Recommendation and the Long Tail [C]// Proceedings of the 1st Workshop on Music Recommendation and Discovery. 2010.
[1] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[2] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[3] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[4] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[5] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[6] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[7] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[8] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[9] Wang Daoping,Jiang Zhongyang,Zhang Boqing. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[10] Wang Yong,Wang Yongdong,Guo Huifang,Zhou Yumin. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[11] Hua Lingfeng,Yang Gaoming,Wang Xiujun. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[12] Xue Fuliang,Liu Junling. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[13] Qin Xingxin,Wang Rongbo,Huang Xiaoxi,Chen Zhiqun. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[14] Li Daoguo,Li Lianjie,Shen Enping. New Collaborative Filtering Recommendation Algorithm Based on User Rating Time[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[15] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938