|
|
Question Classification Based on Bidirectional GRU with Hierarchical Attention and Multi-channel Convolution |
Yu Bengong1,2,Zhu Mengdi1( ) |
1School of Management, Hefei University of Technology, Hefei 230009, China 2Key Laboratory of Process Optimization & Intelligent Decision-making, Ministry of Education, Hefei University of Technology, Hefei 230009, China |
|
|
Abstract [Objective] This paper proposes a method to extract multi-level features from the question texts, aiming to better understand their semantics and address the issues facing text classification. [Methods] First, we constructed multi-channel attention feature matrices based on the multi-feature attention mechanism at the word level. It enriched the semantic representation of the texts and fully utilized the interrogative words, properties and position features from the questions. Then, we convolved the new matrices to obtain phrase-level feature representation. Third, we rearranged the vector representation and fed data to the bidirectional GRU(Gated Recurrent Unit) to access forward and backward semantic features respectively. Finally, we applied the latent topic attention to strengthen the topic information in the bidirectional contextual features, and generated the final text vector for the classification results. [Results] The accuracy rates of proposed model with three Chinese question datasets were 93.89%, 94.47% and 94.23% respectively, which were 5.82% and 4.50% higher than those of the LSTM and CNN. [Limitations] We only examined our new model with three Chinese question corpus. [Conclusions] The proposed model fully understands the semantic features of question texts, and improves the performance of question classification.
|
Received: 02 December 2019
Published: 21 May 2020
|
|
Corresponding Authors:
Zhu Mengdi
E-mail: 2466004852@qq.com
|
[1] |
Zhao Z, Yang Q F, Cai D, et al. Video Question Answering via Hierarchical Spatio-Temporal Attention Networks[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017: 3518-3524.
|
[2] |
Sarrouti M, Lachkar A, Ouatik S E A, Biomedical Question Types Classification Using Syntactic and Rule Based Approach[C]// Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K). IEEE, 2015,1:265-272.
|
[3] |
Basaj D, Rychalska B, Biecek P, et al. How Much Should You Ask? On the Question Structure in QA Systems[OL]. arXiv Preprint, arXiv: 1809. 03734.
|
[4] |
周源, 刘怀兰, 杜朋朋, 等. 基于改进TF-IDF特征提取的文本分类模型研究[J]. 情报科学, 2017,35(5):111-118.
|
[4] |
( Zhou Yuan, Liu Huailan, Du Pengpeng, et al. Research of Text Classification Model Based on the Improved TF-IDF Feature Extraction[J]. Information Science, 2017,35(5):111-118.)
|
[5] |
邱云飞, 刘聪. 基于协同训练的意图分类优化方法[J]. 现代情报, 2019,39(5):57-63,73.
|
[5] |
( Qiu Yunfei, Liu Cong. Intention Classification Optimization Method Based on Collaborative Training[J]. Journal of Modern Information, 2019,39(5):57-63, 73.)
|
[6] |
Xie W, Gao D, Hao T. A Feature Extraction and Expansion-based Approach for Question Target Identification and Classification[C]// Proceedings of the China Conference on Information Retrieval. Springer, 2017: 249-260.
|
[7] |
Hasan A M, Zakaria L Q. Question Classification Using Support Vector Machine and Pattern Matching[J]. Journal of Theoretical and Applied Information Technology, 2016,87(2):259-265.
|
[8] |
张青, 吕钊. 基于主题扩展的领域问题分类方法[J]. 计算机工程, 2016,42(9):202-207, 213.
doi: 10.3969/j.issn.1000-3428.2016.09.036
|
[8] |
( Zhang Qing, Lv Zhao. Domain Question Classification Method Based on Topic Expansion[J]. Computer Engineering, 2016,42(9):202-207, 213.)
doi: 10.3969/j.issn.1000-3428.2016.09.036
|
[9] |
冶忠林, 杨燕, 贾真, 等. 基于语义扩展的短问题分类[J]. 计算机应用, 2015,35(3):792-796.
doi: 10.11772/j.issn.1001-9081.2015.03.792
|
[9] |
( Ye Zhonglin, Yang Yan, Jia Zhen, et al. Short Question Classification Based on Semantic Extensions[J]. Journal of Computer Applications, 2015,35(3):792-796.)
doi: 10.11772/j.issn.1001-9081.2015.03.792
|
[10] |
杜慧, 俞晓明, 刘悦, 等. 融合词性和注意力的卷积神经网络对象级情感分类方法[J]. 模式识别与人工智能, 2018,31(12):1120-1126.
|
[10] |
( Du Hui, Yu Xiaoming, Liu Yue, et al. CNN with Part-of-Speech and Attention Mechanism for Targeted Sentiment Classification[J]. Pattern Recognition and Artificial Intelligence, 2018,31(12):1120-1126.)
|
[11] |
Bairaktaris A, Symeonidis S, Arampatzis A. DUTH at SemEval-2019 Task 8: Part-Of-Speech Features for Question Classification[C]// Proceedings of the 13th International Workshop on Semantic Evaluation. 2019: 1155-1159.
|
[12] |
Kim Y. Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint, arXiv: 1408.5882.
|
[13] |
Xiao G Y, Mo J Q, Chow E, et al. Multi-task CNN for Classification of Chinese Legal Questions[C]// Proceedings of the 2017 IEEE 14th International Conference on e-Business Engineering. 2017: 84-90.
|
[14] |
陈珂, 梁斌, 柯文德, 等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展, 2018,55(5):945-957.
|
[14] |
( Chen Ke, Liang Bin, Ke Wende, et al. Chinese Micro-blog Sentiment Analysis Based on Multi-channels Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2018,55(5):945-957.)
|
[15] |
Tan C Q, Wei F R, Zhou Q Y, et al. Context-aware Answer Sentence Selection with Hierarchical Gated Recurrent Neural Networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2018,26(3):540-549.
|
[16] |
Chen S, Zheng B, Hao T Y. Capsule-based Bidirectional Gated Recurrent Unit Networks for Question Target Classification[C]// Proceedings of the 24th China Conference on Information Retrieval. Springer, 2018: 67-77.
|
[17] |
Zhou C T, Sun C L, Liu Z Y, et al. A C-LSTM Neural Network for Text Classification[OL]. arXiv Preprint, arXiv: 1511.08630.
|
[18] |
Zhang Z Q, Robinson D, Tepper J. Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network[C]// Proceedings of the European Semantic Web Conference. Springer, 2018: 745-760.
|
[19] |
Zhou X Q, Hu B, Chen Q, et al. Recurrent Convolutional Neural Network for Answer Selection in Community Question Answering[J]. Neurocomputing, 2018,274:8-18.
doi: 10.1016/j.neucom.2016.07.082
|
[20] |
Mnih V, Heess N, Graves A, et al. Recurrent Models of Visual Attention[C]// Proceedings of the Conference and Workshop on Neural Information Processing Systems. 2014: 2204-2212.
|
[21] |
Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[OL]. arXiv Preprint, arXiv: 1409.0473.
|
[22] |
Chen Q, Hu Q M, Huang X J, et al. Enhancing Recurrent Neural Networks with Positional Attention for Question Answering[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017: 993-996.
|
[23] |
陶志勇, 李小兵, 刘影, 等. 基于双向长短时记忆网络的改进注意力短文本分类方法[J]. 数据分析与知识发现, 2019,3(12):21-29.
|
[23] |
( Tao Zhiyong, Li Xiaobing, Liu Ying, et al. Classifying Short Texts with Improved-Attention Based Bidirectional Long Memory Network[J]. Data Analysis and Knowledge Discovery, 2019,3(12):21-29.)
|
[24] |
Liu J, Yang Y H, Lv S Q, et al. Attention-based BiGRU-CNN for Chinese Question Classification[J]. Journal of Ambient Intelligence and Humanized Computing. DOI: 10.1007/s12652-019-01344-9.
pmid: 20975986
|
[25] |
Shen Y, Deng Y, Yang M, et al. Knowledge-aware Attentive Neural Network for Ranking Question Answer Pairs[C]// Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 901-904.
|
[26] |
Yang M, Tu W T, Qu Q, et al. Advanced Community Question Answering by Leveraging External Knowledge and Multi-Task Learning[J]. Knowledge-Based Systems, 2019,171:106-119.
doi: 10.1016/j.knosys.2019.02.006
|
[27] |
Yang Z C, Yang D Y, Dyer C, et al. Hierarchical Attention Networks for Document Classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 1480-1489.
|
[28] |
Yu B G, Xu Q T, Zhang P H. Question Classification Based on MAC-LSTM[C]// Proceedings of the 2018 IEEE 3rd International Conference on Data Science in Cyberspace (DSC). IEEE, 2018: 69-75.
|
[29] |
Tran N K, Niedereee C. Multihop Attention Networks for Question Answer Matching[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. 2018: 325-334.
|
[30] |
朱茂然, 王奕磊, 高松, 等. 中文比较关系的识别:基于注意力机制的深度学习模型[J]. 情报学报, 2019,38(6):612-621.
|
[30] |
( Zhu Maoran, Wang Yilei, Gao Song, et al. A Deep-learning Model Based on Attention Mechanism for Chinese Comparative Relation Detection[J]. Journal of the China Society for Scientific and Technical Information, 2019,38(6):612-621.)
|
[31] |
曾子明, 万品玉. 基于双层注意力和Bi-LSTM的公共安全事件微博情感分析[J]. 情报科学, 2019,37(6):23-29.
|
[31] |
( Zeng Ziming, Wan Pinyu. Sentiment Analysis of Public Safety Events in Micro-blog Based on Double-layered Attention and Bi-LSTM[J]. Information Science, 2019,37(6):23-29.)
|
[32] |
李超, 柴玉梅, 南晓斐, 等. 基于深度学习的问题分类方法研究[J]. 计算机科学, 2016,43(12):115-119.
|
[32] |
( Li Chao, Chai Yumei, Nan Xiaofei, et al. Research on Problem Classification Method Based on Deep Learning[J]. Computer Science, 2016,43(12):115-119.)
|
[33] |
Fudan Question Bank[DS/OL]. [2019-07-10]. http://code.google.com/p/fudannlp/w/edit/QuestionClassification.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|