Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (9): 91-99    DOI: 10.11925/infotech.2096-3467.2020.0022
Current Issue | Archive | Adv Search |
Identifying Emergency Elements Based on BiGRU-AM Model with Extended Semantic Dimension
Yin Haoran,Cao Jinxuan(),Cao Luzhe,Wang Guodong
College of Information Cyber Security, People’s Public Security University of China, Beijing 100035, China
Download: PDF (981 KB)   HTML ( 11
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a new method to recognize emergency elements based on a modified BiGRU-AM model, aiming to improve the poor interpretation of recurrent neural networks for information features with different degrees of importance.[Methods] First, we trained the text corpus to create word vectors, which were connected to semantic features like dependent syntactic relations. Then, we extracted contextual information features with BiGRU. We also introduced attention mechanism to the BiGRU network to extract diversified features. Finally, we activated the learned features with softmax function to generate needed elements.[Results] We examined the modified BiGRU-AM model with the CEC dataset and found its F-value was 2%-21% higher than algorithms of shallow machine learning.[Limitations] The proposed model’s ablilty to decide semantic relations, the accuracy of word segmentation tool, and the hyper parameters need to be improved.[Conclusions] The BiGRU-AM model with extended semantic dimension could effectively extract emergency elements.

Key wordsEmergency      Event Element Recognition      Recurrent Neural Network      Attention Mechanism     
Received: 02 January 2020      Published: 17 July 2020
ZTFLH:  TP183  
Corresponding Authors: Cao Jinxuan     E-mail:

Cite this article:

Yin Haoran,Cao Jinxuan,Cao Luzhe,Wang Guodong. Identifying Emergency Elements Based on BiGRU-AM Model with Extended Semantic Dimension. Data Analysis and Knowledge Discovery, 2020, 4(9): 91-99.

URL:     OR

Event Element Recognition Model
Unit Structure of GRU
事件类型 事件数量 句子数量 时间要素 地点要素 对象要素
地震 62 401 463 487 1 072
火灾 75 433 531 726 978
交通事故 85 514 697 1031 1 509
恐怖袭击 49 324 431 412 674
食物中毒 61 392 637 376 943
合计 332 2 064 2 759 3 032 5 176
CEC Corpus
维度 精确率/% 召回率/% F值/%
50 69.30 70.05 69.67
100 73.36 71.77 72.56
150 77.12 73.14 75.08
200 74.21 72.16 73.17
250 68.61 66.27 67.42
300 70.68 66.83 68.70
Recognition Effect of Different Word Vector Dimensions
Recognition Effect of Different Dropout Value
Recognition Effect of Different Epoch Value
实验方法 精确率/% 召回率/% F值/%
POS[20] 68.80 47.70 56.34
触发词拓展[21] 65.28 63.49 64.37
BiGRU 74.59 71.20 72.86
依存句法分析[22] 72.67 73.71 73.19
MaxEnt+规则统计[23] 68.10 83.00 74.80
BiGRU-AM 76.29 73.63 74.93
要素填充+CRF[24] 79.40 73.70 76.00
ESD-BiGRU-AM 79.12 76.83 77.96
Experimental Results
[1] 秦彦霞, 张民, 郑德权. 神经网络事件抽取技术综述[J]. 智能计算机与应用, 2018,8(3):1-5, 10.
[1] ( Qin Yanxia, Zhang Min, Zheng Dequan. A Survey on Neural Network-Based Methods for Event Extraction[J]. Intelligent Computer and Applications, 2018,8(3):1-5, 10.)
[2] 夏彦, 何琳, 潘运来, 等. 基于规则与统计相结合的互联网突发事件识别研究[J]. 现代图书情报技术, 2010(10):65-69.
[2] ( Xia Yan, He Lin, Pan Yunlai, et al. Research on Recognition of Sudden Events on Web Based on Combination of Rules and Statistical Method[J]. New Technology of Library and Information Service, 2010(10):65-69.)
[3] Zhong Z Y, Jin L W, Feng Z Y. Multi-font Printed Chinese Character Recognition Using Multi-pooling Convolutional Neural Network[C] //Proceedings of the 13th International Conference on Document Analysis and Recognition. DOI: 10.1109/ICDAR.2015.7333733.
[4] 蒋德良. 基于规则匹配的突发事件结果信息抽取研究[J]. 计算机工程与设计, 2010,31(14):3294-3297.
[4] ( Jiang Deliang. Research on Extraction of Emergency Event Information Based on Rules Matching[J]. Computer Engineering and Design, 2010,31(14):3294-3297.)
[5] 姚占雷, 许鑫. 互联网新闻报道中的突发事件识别研究[J]. 现代图书情报技术, 2011(4):52-57.
[5] ( Yao Zhanlei, Xu Xin. Research on the Detection of Sudden Events in News Stories of Online Information[J]. New Technology of Library and Information Service, 2011(4):52-57.)
[6] 何中市, 刘莉, 邢欣来, 等. 基于语义角色的中文事件识别[J]. 计算机工程与科学, 2013,35(4):181-185.
[6] ( He Zhongshi, Liu Li, Xing Xinlai, et al. Chinese Events Recognition Based on Semantic Role[J]. Computer Engineering & Science, 2013,35(4):181-185.)
[7] 唐慧慧, 王昊, 张紫玄, 等. 基于汉字标注的中文历史事件名抽取研究[J]. 数据分析与知识发现, 2018,2(7):89-100.
[7] ( Tang Huihui, Wang Hao, Zhang Zixuan, et al. Extracting Names of Historical Events Based on Chinese Character Tags[J]. Data Analysis and Knowledge Discovery, 2018,2(7):89-100.)
[8] 黎红. 基于深度学习的维吾尔语文本事件信息的抽取与分析[D]. 乌鲁木齐: 新疆大学, 2018.
[8] ( Li Hong. Extraction and Analysis of Event Information in Uyghur Language Based on Deep Learning[D]. Urumqi: Xinjiang University, 2018.)
[9] 施喆尔, 陈锦秀. 基于语言模型及循环卷积神经网络的事件检测[J]. 厦门大学学报(自然科学版), 2019,58(3):442-448.
[9] ( Shi Zheer, Chen Jinxiu. Event Detection via Recurrent and Convolutional Networks Based on Language Model[J]. Journal of Xiamen University (Natural Science), 2019,58(3):442-448.)
[10] Liu K, Sun Z S, Jiang J F, et al. A Combined Events Recognition Scheme Using Hybrid Features in Distributed Optical Fiber Vibration Sensing System[J]. IEEE Access, 2019. DOI: 10.1109/ACCESS.2019.2932187.
doi: 10.1109/ACCESS.2019.2958985 pmid: 31942279
[11] 黄细凤. 基于动态掩蔽注意力机制的事件抽取[J/OL]. 计算机应用研究. [2019-07-27].
[11] ( Huang Xifeng. Event Extraction via Dynamic Masked Attention[J/OL]. Application Research of Computers. [2019-07-27].
[12] 张亚军, 刘宗田, 周文. 基于深度信念网络的事件识别[J]. 电子学报, 2017,45(6):1415-1423.
[12] ( Zhang Yajun, Liu Zongtian, Zhou Wen. Event Recognition Based on Deep Belief Network[J]. Acta Electronica Sinica, 2017,45(6):1415-1423.)
[13] Lin H Y, Lu Y J, Han X P, et al. Nugget Proposal Networks for Chinese Event Detection[OL]. arXiv Preprint, arXiv: 1805.00249.
[14] 涂铭, 刘祥, 刘树春. Python自然语言处理实战: 核心技术与算法[M]. 北京: 机械工业出版社, 2018.
[14] ( Tu Ming, Liu Xiang, Liu Shuchun. Natural Language Processing: Core Technology and Algorithm with Python[M]. Beijing: China Machine Press, 2018.)
[15] Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words and Phrases and Their Compositionality[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013: 3111-3119.
[16] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[17] Cho K, van Merrienboer B, Gulcehre C, et al. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation[OL]. arXiv Preprint, arXiv: 1406.1078.
[18] Mnih V, Heess N, Graves A, et al. Recurrent Models of Visual Attention[C] //Proceedings of 2014 Advances in Neural Information Processing Systems. 2014: 2204-2212.
[19] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[C] //Proceedings of International Conference on Learning Representations, 2015.
[20] Ahn D. The Stages of Event Extraction[C] //Proceedings of the Workshop on Annotating and Reasoning about Time and Events. 2006: 1-8.
[21] 赵妍妍, 秦兵, 车万翔, 等. 中文事件抽取技术研究[J]. 中文信息学报, 2008,22(1):3-8.
[21] ( Zhao Yanyan, Qin Bing, Che Wanxiang, et al. Research on Chinese Event Extraction[J]. Journal of Chinese Information Processing, 2008,22(1):3-8.)
[22] 张鹏. 面向突发事件的事件要素识别研究[D]. 淮南:安徽理工大学, 2018.
[22] ( Zhang Peng. Research on Event Element Recognition for Emergencies[D]. Huainan: Anhui University of Science & Technology, 2018.)
[23] 孙佩佩. 面向事件的自动文摘研究[D]. 淮南: 安徽理工大学, 2016.
[23] ( Sun Peipei. Research on Event-oriented Automatic Summarization[D]. Huainan: Anhui University of Science & Technology, 2016.)
[24] 张璐. 面向中文文本的事件提取方法研究[D]. 北京: 中国人民公安大学, 2019.
[24] ( Zhang Lu. Research on Chinese-oriented Text Event Extraction[D]. Beijing: People’s Public Security University of China, 2019.)
[25] 邱奇志, 周三三, 刘长发, 等. 基于文体和词表的突发事件信息抽取研究[J]. 中文信息学报, 2018,32(9):56-65, 74.
[25] ( Qiu Qizhi Zhou Sansan Liu Changfa, et al. Emergency Information Extraction Based on Style and Terminology[J]. Journal of Chinese Information Processing, 2018,32(9):56-65, 74.)
[26] Yin H R, Cao J X, Cao L Z, et al. Chinese Emergency Event Recognition Using Conv-RDBiGRU Model[J]. Computational Intelligence and Neuroscience, 2020: 7090918.
[27] 闻畅, 刘宇, 顾进广. 基于注意力机制的双向长短时记忆网络模型突发事件演化关系抽取[J]. 计算机应用, 2019,39(6):1646-1651.
[27] ( Wen Chang, Liu Yu, Gu Jinguang. Evolution Relationship Extraction of Emergency Based on Attention-based Bidirectional Long Short-term Memory Network Model[J]. Journal of Computer Applications, 2019,39(6):1646-1651.)
[28] Li D Y, Huang L F, Ji H, et al. Biomedical Event Extraction Based on Knowledge-driven Tree-LSTM[C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019: 1421-1430.
[29] Chen Y, Zhou C J, Li T X, et al. Named Entity Recognition from Chinese Adverse Drug Event Reports with Lexical Feature Based BiLSTM-CRF and Tri-training[J]. Journal of Biomedical Informatics, 2019,96:103252.
doi: 10.1016/j.jbi.2019.103252 pmid: 31323311
[1] Yang Hanxun, Zhou Dequn, Ma Jing, Luo Yongcong. Detecting Rumors with Uncertain Loss and Task-level Attention Mechanism[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[2] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[3] Yin Pengbo,Pan Weimin,Zhang Haijun,Chen Degang. Identifying Clickbait with BERT-BiGA Model[J]. 数据分析与知识发现, 2021, 5(6): 126-134.
[4] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[5] Duan Jianyong,Wei Xiaopeng,Wang Hao. A Multi-Perspective Co-Matching Model for Machine Reading Comprehension[J]. 数据分析与知识发现, 2021, 5(4): 134-141.
[6] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[7] Jiang Cuiqing,Wang Xiangxiang,Wang Zhao. Forecasting Car Sales Based on Consumer Attention[J]. 数据分析与知识发现, 2021, 5(1): 128-139.
[8] Huang Lu,Zhou Enguo,Li Daifeng. Text Representation Learning Model Based on Attention Mechanism with Task-specific Information[J]. 数据分析与知识发现, 2020, 4(9): 111-122.
[9] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[10] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[11] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[12] Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133.
[13] Xue Fuliang,Liu Lifang. Fine-Grained Sentiment Analysis with CRF and ATAE-LSTM[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[14] Zhang Yipeng,Ma Jingdong. Analyzing Sentiments and Dissemination of Misinformation on Public Health Emergency[J]. 数据分析与知识发现, 2020, 4(12): 45-54.
[15] Qi Ruihua,Jian Yue,Guo Xu,Guan Jinghua,Yang Mingxin. Sentiment Analysis of Cross-Domain Product Reviews Based on Feature Fusion and Attention Mechanism[J]. 数据分析与知识发现, 2020, 4(12): 85-94.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938