|
|
Analyzing & Clustering Enterprise Microblog Users with Supernetwork |
Xi Yunjiang1,Du Diedie1,Liao Xiao2( ),Zhang Xuehong1 |
1School of Business Administration, South China University of Technology, Guangzhou 510641, China 2School of Internet Finance and Information Engineering, Guangdong University of Finance,Guangzhou 510521, China |
|
|
Abstract [Objective] This paper proposes an integrated modeling method to process multi-dimensional user interest data, aiming to examine the spectral clustering method for analyzing user interests. [Methods] First, we retrieved Weibo (Microblog) data of "Three Squirrels" and used supernetwork model to integrate the modeling of contents and user interaction data. Then, we constructed an interactive interest index and grouped the users with spectral clustering algorithm. Finally, we evaluated the clustering results with the Silhouette Coefficient and Davies-Bouldin methods. [Results] We found that the clustering DB value reached 0.57 (k was set at 15), which was evenly distributed. [Limitations] More research is needed to further explore user characteristic data and the impacts of different data dimensions on user interests. [Conclusions] This study proposes maintenance and marketing suggestions for enterprise Weibo profiles, which will help them identify user interests and improve marketing effectiveness.
|
Received: 10 February 2020
Published: 14 September 2020
|
|
Corresponding Authors:
Liao Xiao
E-mail: 1448362251@qq.com
|
[1] |
Dao W V T, Angelina N H L, Cheng J M S, et al. Social Media Advertising Value: The Case of Transitional Economies in Southeast Asia[J]. International Journal of Advertising, 2014,33(2):271-294.
|
[2] |
Mago N, Shirwaikar R D, Acharya U D, et al. Partition and Hierarchical Based Clustering Techniques for Analysis of Neonatal Data[C]// Proceedings of International Conference on Cognition and Recognition. 2017: 345-355.
|
[3] |
Zhang S C, Yu J. A New Connectivity-based Cluster Validity Index[C]// Proceedings of 2010 Chinese Conference on Pattern Recognition (CCPR). 2010.
|
[4] |
Yamaguchi Y, Amagasa T, Kitagawa H. Tag-based User Topic Discovery Using Twitter Lists[C]// Proceedings of 2011 International Conference on Advances in Social Networks Analysis and Mining. 2011: 13-20.
|
[5] |
Wu W, Zhang B, Ostendorf M. Automatic Generation of Personalized Annotation Tags for Twitter Users[C]// Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association of Computational Linguistics. 2010: 689-692.
|
[6] |
王艳茹, 马慧芳, 刘海姣, 等. 基于多标签语义关联关系的微博用户兴趣建模方法[J]. 计算机工程与科学, 2018,40(11):2067-2073.
|
[6] |
( Wang Yanru, Ma Huifang, Liu Haijiao, et al. A Microblog User Interest Modeling Method Based on Multi-tag Semantic Correlation[J]. Computer Engineering & Science, 2018,40(11):2067-2073.)
|
[7] |
熊回香, 叶佳鑫. 一种双层的微博用户相似度算法[J]. 情报杂志, 2018,37(6):160-166.
|
[7] |
( Xiong Huixiang, Ye Jiaxin. A Double-level Microblogs User Similarity Algorithm[J]. Journal of Intelligence, 2018,37(6):160-166.)
|
[8] |
Wallner G, Kriglstein S, Drachen A. Tweeting Your Destiny: Profiling Users in the Twitter Landscape around an Online Game[OL]. arXiv Preprint, arXiv: 1905.12694.
|
[9] |
李鹏飞, 董旭, 仲兆满, 等. 基于微博用户兴趣话题的相似用户挖掘[J]. 计算机工程与应用, 2019,55(11):102-109.
|
[9] |
( Li Pengfei, Dong Xu, Zhong Zhaoman, et al. Similar User Mining Based on User Interest Topics in Weibo[J]. Computer Engineering and Applications, 2019,55(11):102-109.)
|
[10] |
Sohail A, Cheema M A, Taniar D. Geo-social Temporal Top-k Queries in Location-based Social Networks[A]//Databases Theory and Applications[M]. Springer, 2020: 147-160.
|
[11] |
Wan L, Hong Y M, Huang Z, et al. A Hybrid Ensemble Learning Method for Tourist Route Recommendations Based on Geo-tagged Social Networks[J]. International Journal of Geographical Information Science, 2018,32(11):2225-2246.
|
[12] |
余帝乾. 一种微博用户行为分析预测的方法:中国,CN201711078084.0[P]. 2018-04-13. [2018-04-13].
|
[12] |
( Yu Diqian. Micro-blog User Behavior Analyzing and Forecasting Method:China,CN201711078084.0[P]. 2018-04-13. [2018-04-13].
|
[13] |
Ma H F, Jia M H Z, Zhang D, et al. Combining Tag Correlation and User Social Relation for Microblog Recommendation[J]. Information Sciences, 2017,385(C):325-337.
|
[14] |
万子玮. 基于主题词的微博用户兴趣模型研究[D]. 北京:首都经济贸易大学, 2018.
|
[14] |
( Wan Ziwei. Research on Weibo User Interest Model Based on Topic Words[D]. Beijing: Capital University of Economics and Business, 2018.)
|
[15] |
Sheffi Y. Urban Transportation Networks: Equi-librium Analysis with Mathematical Programming Methods[M]. Printice-Hall, 1985.
|
[16] |
Nagurney A, Cruz J, Dong J, et al. Supply Chain Networks, Electronic Commerce, and Supply Side and Demand Side Risk[J]. European Journal of Operational Research, 2005,164(1):120-142.
|
[17] |
王寿彪, 李新明, 刘东. 基于粒计算的武器装备体系结构超网络模型[J]. 系统工程与电子技术, 2016,38(4):836-843.
|
[17] |
( Wang Shoubiao, Li Xinming, Liu Dong. Super-network Model of Architecture for Weapon Equipment System of Systems Based on Granular Computing[J]. Journal of Systems Engineering and Electronics, 2016,38(4):836-843.)
|
[18] |
胡弥亨. 基于超图理论的物联网实体关系网络建模[J]. 电脑知识与技术, 2018,14(5):41-43.
|
[18] |
( Hu Miheng. Modeling of Entity Relationship Network in the Internet of Things Based on Hypergraph Theory[J]. Computer Knowledge and Technology, 2018,14(5):41-43.)
|
[19] |
Shang Y C, Wang H S, Wang Y L. The Supernetwork Model of Social Networking Services[J]. Journal of Donghua University(English Edition), 2012,29(1):37-39.
|
[20] |
Lian Y, Dong X F, Chi Y X, et al. An Internet Water Army Detection Supernetwork Model[J]. IEEE Access, 2019,7:55108-55120.
|
[21] |
Chi Y X, Tang X Y, Lian Y, et al. A Supernetwork-based Online Post Informative Quality Evaluation Model[J]. Knowledge-based Systems, 2019,168:10-24.
|
[22] |
王丹, 张海涛, 刘雅姝, 等. 微博舆情关键节点情感倾向分析及思想引领研究[J]. 图书情报工作, 2019,63(4):15-22.
|
[22] |
( Wang Dan, Zhang Haitao, Liu Yashu, et al. Sentiment Analysis and Ideological Guidance of Key Nodes in Micro-blog Public Opinion[J]. Library and Information Service, 2019,63(4):15-22.)
|
[23] |
姬逸潇, 吴晨思, 杨粟, 等. 基于超网络的网络安全事件连锁演化模型[J]. 信息安全学报, 2019,4(1):89-100.
|
[23] |
( Ji Yixiao, Wu Chensi, Yang Su, et al. Network Security Event Chain Evolution Model Based on Super Network[J]. Journal of Cyber Security, 2019,4(1):89-100.)
|
[24] |
Nguyen M D, Shin W Y. DBSTexC: Density-based Spatio-textual Clustering on Twitter[C]// Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2017: 23-26.
|
[25] |
郑杰辉. 基于聚类挖掘算法的微博用户兴趣发现的实现[J]. 网络安全技术与应用, 2017(10):48-49, 56.
|
[25] |
( Zheng Jiehui. Implementation of Microblog User Interest Discovery Based on Clustering Mining Algorithm[J]. Network Security Technology & Application, 2017(10):48-49, 56.)
|
[26] |
Shi J B, Malik J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) : 888-905.
|
[27] |
徐洪元. 社会媒体群组探测的谱聚类研究与应用[D]. 武汉: 武汉理工大学, 2016.
|
[27] |
( Xu Hongyuan. Spectral Clustering Research and Application on Community Detection of Social Media[D]. Wuhan: Wuhan University of Technology, 2016.)
|
[28] |
Tran C, Kim J Y, Shin W Y, et al. Clustering-based Collaborative Filtering Using an Incentivized/Penalized User Model[J]. IEEE Access, 2019,7:62115-62125.
|
[29] |
Zhang S X, Zhang S Y, Yen N Y, et al. The Recommendation System of Micro-blog Topic Based on User Clustering[J]. Mobile Networks and Applications, 2017,22(2):228-239.
|
[30] |
熊回香, 蒋武轩. 基于标签与关系网络的用户聚类推荐研究[J]. 数据分析与知识发现, 2017,1(6):36-46.
|
[30] |
( Xiong Huixiang, Jiang Wuxuan. Clustering and Recommending Users Based on Tags and Relation Network[J]. Data Analysis and Knowledge Discovery, 2017,1(6):36-46.)
|
[31] |
廖晓, 叶广宇, 李伟婵, 等. 基于内容与行为数据集成建模的企业微博粉丝兴趣挖掘方法[J]. 系统工程, 2019,37(2):139-149.
|
[31] |
( Liao Xiao, Ye Guangyu, Li Weichan, et al. The Methods to Mine Fans Interests of Enterprise Micro-blog Based on the Integration of Text and Behavior Data[J]. Systems Engineering, 2019,37(2):139-149.)
|
[32] |
Von Luxburg U. A Tutorial on Spectral Clustering[J]. Statistics and Computing, 2007,17(4):395-416.
|
[33] |
Kardaras D K, Kaperonis S, Barbounaki S, et al. An Approach to Modelling User Interests Using TF-IDF and Fuzzy Sets Qualitative Comparative Analysis[C]// Proceedings of IFIP International Conference on Artificial Intelligence Applications and Innovations. 2018: 606-615.
|
[34] |
Wang W J, Xu Z B, Lu W Z, et al. Determination of the Spread Parameter in the Gaussian Kernel for Classification and Regression[J]. Neurocomputing, 2003,55(3/4):643-663.
doi: 10.1016/S0925-2312(02)00632-X
|
[35] |
安兴茹. 基于正态分布的词频分析法高频词阈值研究[J]. 情报杂志, 2014,33(10):129-136.
|
[35] |
( An Xingru. The Research on the Threshold of High-frequency Words Based on the Normal Distribution in Word Frequency Analysis[J]. Journal of Intelligence, 2014,33(10):129-136.)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|