|
|
Forecasting Poultry Turnovers with Machine Learning and Multiple Factors |
Chen Dong1,Wang Jiandong1( ),Li Huiying1,Cai Sihang1,Huang Qianqian1,Yi Chengqi1,Cao Pan2,3 |
1Big Data Development Department, State Information Center, Beijing 100045, China 2Chongqing Western Institute of Big Data Advanced Application, Chongqing 401100, China 3Beijing Yidianying Technology Co., Ltd, Beijing 100073, China |
|
|
Abstract [Objective] This paper tries to forecast the trends of poultry market influenced by multiple factors, aiming to strengthen the decision makings and policies for livestock and poultry production.[Methods] We chose 50 variables to construct machine learning models for predicting daily turnovers of dressed chicken. Our models were created based on popular machine learning algorithms.[Results] We found that GBRT, Random Forest and Elastic Net yielded stable prediction results and their MAEs were 25.30, 26.67, and 28.21 respectively. The prediction was improved with more large training sets and longer training time. We could forecast the turnovers of three periods in advance.[Limitations] The training sets needs to include more features and historical data.[Conclusions] The proposed models could quantatively assess and forecast the impacts of emergencies on industrial output, which imrpoves governmental policy making.
|
Received: 16 April 2020
Published: 25 July 2020
|
|
Corresponding Authors:
Wang Jiandong
E-mail: wangjd@sic.gov.cn
|
[1] |
国家统计局. 2020年1月份居民消费价格同比上涨5.4%[R/OL]. [ 2020- 03- 12]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200210_1725569.html.
|
[1] |
( National Bureau of Statistics of China. Consumer Prices for January 2020 [R/OL]. [ 2020- 03- 12]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200210_1725569.html.)
|
[2] |
潘迪特, 李昌琪. 时间序列及系统分析与应用[M]. 李昌琪, 荣国俊译. 北京: 机械工业出版社, 1988.
|
[2] |
( Pandit S M, Li Changqi. Time Series and System Analysis with Applications[M]. Translated by Li Changqi, Rong Guojun. Beijing: China Machine Press, 1988.)
|
[3] |
李一智. 经济预测技术[M]. 北京: 清华大学出版社, 1991.
|
[3] |
( Li Yizhi. Economic Forecasting Techniques[M]. Beijing: Tsinghua University Press, 1991.)
|
[4] |
邓聚龙. 灰色系统(社会·经济)[M]. 北京: 国防工业出版社, 1985.
|
[4] |
( Deng Julong Grey System (Sociology·Economics)[M]. Beijing: National Defense Industry Press, 1985.)
|
[5] |
李志强, 白文斌, 张亚丽, 等. 基于ARIMA模型的内蒙古羊产业分析与预测[J]. 山西农业科学, 2011,39(7):729-732, 743.
|
[5] |
( Li Zhiqiang, Bai Wenbin, Zhang Yali, et al. Analysis and Forecast of Sheep Industry Based on the ARIMA Model in Inner Mongolia[J]. Journal of Shanxi Agricultural Sciences, 2011,39(7):729-732, 743.)
|
[6] |
王晓梅. 灰色理论GM(1,1)模型在我国畜产品产量预测中的应用[J]. 安徽农业科学, 2007,35(1):7-8.
|
[6] |
( Wang Xiaomei. The Application of Grey Theory GM(1,1) Model in the Prediction of Animal Product Yield in China[J]. Journal of Anhui Agricultural Sciences, 2007,35(1):7-8.)
|
[7] |
林绍森, 唐永金. 三种模型对我国粮食产量预测效果的比较[J]. 统计与决策, 2007(4):39-40.
|
[7] |
( Lin Shaosen, Tang Yongjin. Comparison of Three Models on Forecasting Grain Yields in China[J]. Statistics & Decision, 2007(4):39-40.)
|
[8] |
刘峰, 王儒敬, 李传席. ARIMA模型在农产品价格预测中的应用[J]. 计算机工程与应用, 2009,45(25):238-239, 248.
doi: 10.3778/j.issn.1002-8331.2009.25.073
|
[8] |
( Liu Feng, Wang Rujing, Li Chuanxi. Application of ARIMA Model in Forecasting Agricultural Product Price[J]. Computer Engineering and Applications, 2009,45(25):238-239, 248.)
doi: 10.3778/j.issn.1002-8331.2009.25.073
|
[9] |
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. New York: Springer Science & Business Media, 2009.
|
[10] |
Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net[J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 2005,67(2):301-320.
|
[11] |
Breiman L, Friedman J, Olshen R, et al. Classification and Regression Trees[M]. CRC Press, 1984.
|
[12] |
Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine[J]. Annals of Statistics, 2001,29(5):1189-1232.
|
[13] |
谢坤, 容钰添, 胡奉平, 等. 基于数据集成的随机森林算法[J/OL]. 计算机工程, [2020-03-12]. https://doi.org/10.19678/j.issn. 1000-3428.0055891.
|
[13] |
( Xie Kun, Rong Yutian, Hu Fengping, et al. Random Forest Based on Data Ensembling[J/OL]. Computer Engineering, [2020-03-12]. https://doi.org/10.19678/j.issn. 1000-3428.0055891.)
|
[14] |
林霞, 刘宗尚, 高宇, 等. 基于机器学习的产油量主控因素分析[J]. 信息系统工程, 2019(12):94-97, 99.
|
[14] |
( Lin Xia, Liu Zongshang, Gao Yu, et al. Analysis of the Main Control Factors of Oil Production Based on Machine Learning[J]. China CIO News, 2019(12):94-97, 99.)
|
[15] |
Ayaru L, Ypsilantis P P, Nanapragasam A, et al. Prediction of Outcome in Acute Lower Gastrointestinal Bleeding Using Gradient Boosting[J]. PLoS One, 2015,10(7):e0132485.
doi: 10.1371/journal.pone.0132485
pmid: 26172121
|
[16] |
张棪, 曹健. 面向大数据分析的决策树算法[J]. 计算机科学, 2016,43(S1):374-379, 383.
|
[16] |
( Zhang Yan, Cao Jian. Decision Tree Algorithms for Big Data Analysis[J]. Computer Science, 2016,43(S1):374-379, 383.)
|
[17] |
董莉, 彭凯越, 唐晓彬. 大数据背景下的CPI实时预测研究[J]. 调研世界, 2017(8):51-54.
|
[17] |
( Dong Li, Peng Kaiyue, Tang Xiaobin. Research on Real-Time CPI Prediction Under the Background of Big Bata[J]. The World of Survey and Research, 2017(8):51-54.)
|
[18] |
康传利, 顾峻峰, 刘兆威. 梯度提升回归树的旅游流量预测模型[J]. 数学的实践与认识, 2019,49(15):251-261.
|
[18] |
( Kang Chuanli, Gu Junfeng, Liu Zhaowei. Analysis of Tourist Volume Forecasting Model Based on Gradient Boost Regression Tree[J]. Mathematics in Practice and Theory, 2019,49(15):251-261.)
|
[19] |
巩晓文, 凤思苑, 崔壮, 等. 基于SVGD分类预测的梯度提升机与随机森林的性能比较[J]. 中国卫生统计, 2019,36(5):674-677.
|
[19] |
( Gong Xiaowen, Feng Siyuan, Cui Zhuang, et al. Performance Comparison Between Gradient Boosting Machine and Random Forest Based on SVGD Classification Prediction[J]. Chinese Journal of Health Statistics, 2019,36(5):674-677.)
|
[20] |
韩忠明, 原碧鸿, 陈炎, 等. 一个有效的基于GBRT的早期电影票房预测模型[J]. 计算机应用研究, 2018,35(2):410-416.
|
[20] |
( Han Zhongming, Yuan Bihong, Chen Yan, et al. Effective Box-Office Revenue Prediction Model Based on GBRT[J]. Application Research of Computers, 2018,35(2):410-416.)
|
[21] |
Maric I, Ivek I. Self-organizing Polynomial Networks for Time-constrained Applications[J]. IEEE Transactions on Industrial Electronics, 2011,58(5):2019-2029.
|
[22] |
Singh B, Sihag P, Singh K. Modelling of Impact of Water Quality on Infiltration Rate of Soil by Random Forest Regression[J]. Modeling Earth Systems and Environment, 2017,3(3):999-1004.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|