Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (4): 103-114    DOI: 10.11925/infotech.2096-3467.2020.0349
Current Issue | Archive | Adv Search |
Adaptive Recommendation Model Based on User Behaviors
Xiang Zhuoyuan1(),Liu Zhicong2,Wu Yu1
1School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
2Data Center of China Construction Bank, Wuhan 430073, China
Download: PDF (1006 KB)   HTML ( 24
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes an adaptive recommendation model based on user’s behaviors, aiming to address the issues of one model only working for one user type. [Methods] We standardized the recommendation process with a three-tier collaborative structure. The first layer classified users to create different recommendation channels. The second layer matched the improved recommendation sub-algorithm with corresponding channels. The third layer introduced feature weighting to form a recommendation pool, from which the items were selected and recommended to users. [Results] The accuracy, recall, coverage and popularity of the proposed model were 0.24, 0.17, 0.50 and 4.40, which were better than the mainstream models. [Limitations] Our recommendation algorithm cannot work on datasets without scores. [Conclusions] The proposed model can learn the preferences of users and make better recommendations.

Key wordsThree-Layer Collaboration      Adaptive Recommendation      Similarity Mixing      Machine Learning     
Received: 22 April 2020      Published: 17 May 2021
ZTFLH:  G353  
Fund:National Natural Science Foundation of China(61702553)
Corresponding Authors: Xiang Zhuoyuan     E-mail:

Cite this article:

Xiang Zhuoyuan,Liu Zhicong,Wu Yu. Adaptive Recommendation Model Based on User Behaviors. Data Analysis and Knowledge Discovery, 2021, 5(4): 103-114.

URL:     OR

Three-Tier Collaboration Framework
Three Tables Form a Star Model
Importance Coefficient of User Characteristics
α,β Parameter Settings
α,β Parameter Settings
Comparison of the Models (Accuracy)
Comparison of the Models (Recall)
Comparison of the Models (Coverage)
Comparison of the Models (Popularity)
指标 本文 UserCF ItemCF CB Mix
准确率 0.24 0.09 0.08 0.04 0.08
召回率 0.17 0.17 0.16 0.08 0.16
覆盖率 0.50 0.42 0.41 0.59 0.49
流行度 4.40 4.93 4.91 3.56 4.86
Model Performance Under Different Indicators
[1] Persson P. Attention Manipulation and Information Overload[J]. Behavioural Public Policy, 2018,2(1):78-106.
doi: 10.1017/bpp.2017.10
[2] Aswani R, Kar A K, Ilavarasan P V, et al. Search Engine Marketing is Not All Gold: Insights from Twitter and SEOClerks[J]. International Journal of Information Management, 2018,38(1):107-116.
doi: 10.1016/j.ijinfomgt.2017.07.005
[3] Lu J, Wu D, Mao M, et al. Recommender System Application Developments: A Survey[J]. Decision Support Systems, 2015,74:12-32.
doi: 10.1016/j.dss.2015.03.008
[4] Lika B, Kolomvatsos K, Hadjiefthymiades S. Facing the Cold Start Problem in Recommender Systems[J]. Expert Systems with Applications, 2014,41(4):2065-2073.
doi: 10.1016/j.eswa.2013.09.005
[5] Feng J, Fengs X, Zhang N, et al. An Improved Collaborative Filtering Method Based on Similarity[J]. PLoS ONE, 2018,13(9):e0204003.
doi: 10.1371/journal.pone.0204003
[6] Jamali M, Ester M. TrustWalker: A Random Walk Model for Combining Trust-Based and Item-Based Recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009: 397-406.
[7] Lu J, Shambour Q, Xu Y, et al. A Web-Based Personalized Business Partner Recommendation System Using Fuzzy Semantic Techniques[J]. Computational Intelligence, 2013,29(1):37-69.
doi: 10.1111/coin.2013.29.issue-1
[8] Bobadilla J, Ortega F, Hernando A, et al. A Collaborative Filtering Approach to Mitigate the New User Cold Start Problem[J]. Knowledge-Based Systems, 2012,26:225-238.
doi: 10.1016/j.knosys.2011.07.021
[9] Ahn H J. A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-Starting Problem[J]. Information Sciences, 2008,178(1):37-51.
doi: 10.1016/j.ins.2007.07.024
[10] Liu H, Hu Z, Mian A, et al. A New User Similarity Model to Improve the Accuracy of Collaborative Filtering[J]. Knowledge-Based Systems, 2014,56:156-166.
doi: 10.1016/j.knosys.2013.11.006
[11] Son L H. HU-FCF: A Hybrid User-Based Fuzzy Collaborative Filtering Method in Recommender Systems[J]. Expert Systems with Applications: An International Journal, 2014,41(15):6861-6870.
doi: 10.1016/j.eswa.2014.05.001
[12] Karahodza B, Donko D. Feature Enhanced Time-Aware Recommender System[C]//Proceedings of the 25th International Conference on Information, Communication and Automation Technologies. IEEE, 2015: 1-6.
[13] Xia C, Jiang X, Liu S, et al. Dynamic Item-Based Recommendation Algorithm with Time Decay[C]//Proceedings of the 6th International Conference on Natural Computation. IEEE, 2010,1:242-247.
[14] Karahodza B, Supic H, Donko D. An Approach to Design of Time-Aware Recommender System Based on Changes in Group User's Preferences[C]//Proceedings of the 10th International Symposium on Telecommunications. IEEE, 2014: 1-4.
[15] 兰艳, 曹芳芳. 面向电影推荐的时间加权协同过滤算法的研究[J]. 计算机科学, 2017,44(4):295-301, 322.
[15] ( Lan Yan, Cao Fangfang. Research of Time Weighted Collaborative Filtering Algorithm for Movie Recommendation[J]. Computer Science, 2017,44(4):295-301, 322.)
[16] Xing S, Liu F, Wang Q, et al. A Hierarchical Attention Model for Rating Prediction by Leveraging User and Product Reviews[J]. Neurocomputing, 2019,332:417-427.
doi: 10.1016/j.neucom.2018.12.027
[17] Wang J, Lü J. Tag-Informed Collaborative Topic Modeling for Cross Domain Recommendations[J]. Knowledge-Based Systems, 2020,203:106119.
doi: 10.1016/j.knosys.2020.106119
[18] Kala A, Zayani C, Amous I, et al. Social Collaborative Service Recommendation Approach Based on User’s Trust and Domain-Specific Expertise[J]. Future Generation Computer Systems, 2018,80:355-367.
doi: 10.1016/j.future.2017.05.036
[19] 罗海媛, 章牧. 基于用户多属性加权和兴趣相似度的协同过滤算法研究[J]. 情报探索, 2018(5):1-7.
[19] ( Luo Haiyuan, Zhang Mu. Collaborative Filtering Algorithm Based on Users’ Multi-attribute Weighting and Interests Similarity[J]. Information Research, 2018(5):1-7.)
[20] 付芬, 豆育升, 韩鹏, 等. 基于隐式评分和相似度传递的学习资源推荐[J]. 计算机应用研究, 2017,34(12):3725-3729.
[20] ( Fu Fen, Dou Yusheng, Han Peng, et al. Learning Resource Recommendation Based on Implicit Scoring and Similarity Propagation[J]. Application Research of Computers, 2017,34(12):3725-3729.)
[21] 徐元萍, 陈翔. 推荐系统中的新颖性问题研究[J]. 计算机应用研究, 2020,37(8):2310-2314.
[21] ( Xu Yuanping, Chen Xiang. Research on Novelty Problems in Recommendation Systems[J]. Application Research of Computers, 2020,37(8):2310-2314.)
[22] Jamali M, Ester M. A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks[C]// Proceedings of the ACM Conference on Recommender Systems. 2010.
[1] Wang Hanxue,Cui Wenjuan,Zhou Yuanchun,Du Yi. Identifying Pathogens of Foodborne Diseases with Machine Learning[J]. 数据分析与知识发现, 2021, 5(9): 54-62.
[2] Chen Donghua,Zhao Hongmei,Shang Xiaopu,Zhang Runtong. Optimizing Large Hospital Operating Rooms with Data Analytics[J]. 数据分析与知识发现, 2021, 5(9): 115-128.
[3] Che Hongxin,Wang Tong,Wang Wei. Comparing Prediction Models for Prostate Cancer[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[4] Su Qiang, Hou Xiaoli, Zou Ni. Predicting Surgical Infections Based on Machine Learning[J]. 数据分析与知识发现, 2021, 5(8): 65-75.
[5] Zhong Jiawa,Liu Wei,Wang Sili,Yang Heng. Review of Methods and Applications of Text Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[6] Cao Rui,Liao Bin,Li Min,Sun Ruina. Predicting Prices and Analyzing Features of Online Short-Term Rentals Based on XGBoost[J]. 数据分析与知识发现, 2021, 5(6): 51-65.
[7] Chai Guorong,Wang Bin,Sha Yongzhong. Public Health Risk Forecasting with Multiple Machine Learning Methods Combined:Case Study of Influenza Forecasting in Lanzhou, China[J]. 数据分析与知识发现, 2021, 5(1): 90-98.
[8] Chen Dong,Wang Jiandong,Li Huiying,Cai Sihang,Huang Qianqian,Yi Chengqi,Cao Pan. Forecasting Poultry Turnovers with Machine Learning and Multiple Factors[J]. 数据分析与知识发现, 2020, 4(7): 18-27.
[9] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[10] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[11] Wang Shuyi,Liu Sai,Ma Zheng. Microblog Image Privacy Classification with Deep Transfer Learning[J]. 数据分析与知识发现, 2020, 4(10): 80-92.
[12] Ruojia Wang,Lu Zhang,Jimin Wang. Automatic Triage of Online Doctor Services Based on Machine Learning[J]. 数据分析与知识发现, 2019, 3(9): 88-97.
[13] Gang Li,Huayang Zhou,Jin Mao,Sijing Chen. Classifying Social Media Users with Machine Learning[J]. 数据分析与知识发现, 2019, 3(8): 1-9.
[14] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[15] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938