Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (11): 121-130    DOI: 10.11925/infotech.2096-3467.2020.0606
Current Issue | Archive | Adv Search |
Analyzing Evolution of City Tourism Portraits with Multi-Dimensional Features and LDA Model
Ye Guanghui(),Xu Tong,Bi Chongwu,Li Xinyue
School of Information Management, Central China Normal University, Wuhan 430079, China
Download: PDF (858 KB)   HTML ( 7
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper explores the characteristics of a city portrait’s evolution based on visitor’s cognitive data with time attributes. [Methods] First, we chose the urban tourism industry as our research subject. Then, we developed a method using the LDA model and multi-dimensional theme description framework for the city. Finally, we revealed the changing trends of the city portraits from three perspectives: the theme development process, as well as the theme evolution trends in the first and second feature dimensions. [Results] We examined our new model with Hong Kong and found its urban tourism portraits showed no significant periodic changes. However, the tourists’ perceptions on Hong Kong always had the primary and secondary dimensions. Sightseeing, transportation and entertainment were the main factors of tourists’ perceptions on Hong Kong. Specifically, sightseeing was the most important one during the entire process, entertainment was mainly in the early and late stages, and transportation was more likely at the middle stage. We also found each topic node in the evolutionary path had a stable iconic. [Limitations] We need to evaluate our method with other cities. [Conclusions] Our research will benefit urban planning and policy implementation.

Key wordsCity Profile      Evolution Analysis      Feature Dimension      LDA Model     
Received: 24 June 2020      Published: 04 December 2020
ZTFLH:  TP391  
Corresponding Authors: Ye Guanghui     E-mail: 3879-4081@163.com

Cite this article:

Ye Guanghui,Xu Tong,Bi Chongwu,Li Xinyue. Analyzing Evolution of City Tourism Portraits with Multi-Dimensional Features and LDA Model. Data Analysis and Knowledge Discovery, 2020, 4(11): 121-130.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2020.0606     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2020/V4/I11/121

The Research Framework of Urban Portrait Subjects in the View of the Public
作者 特征维度选取
凯文·林奇
(Kevin Lynch)[10]
道路;边缘;区域;节点;标志物
李茜等[11] 旅游氛围(气候、价格、市民素质……);旅游传播(旅游口号、历史文化……);旅游基础设施(交通方式、城市环境……);旅游资源(景点内涵、资源丰富……);旅游服务(景点讲解、纪念品)
陆易[12] 游客基本特征(兴趣偏好、地点偏好……);认知形象(吃、住、行……);情感感知(资源环境、景观特色……);总体感知(满意度、重游意愿)
马天等[13] 地域条件(天气、空气质量……);文化(人文素质、民风……);社会环境(市容市貌、治安条件……);旅游吸引物(自然风光、历史遗迹);旅游配套设施与服务(住宿、食物……)
张文等[14] 游客基本特征(旅游次数、停留天数……);认知形象(自然与人文景点、旅游设施与服务……);情感形象(愉快、激动);重游意向
Gallarza等[15] 景观环境;自然状况;文化吸引;夜间娱乐;购物设施;信息指引;体育设施……
陈建明[16] 规划布局;特色建筑;生态环境;经济发展服务接待;气候条件;历史文化;通讯设施;旅游咨询;景色优美;节庆活动;旅游商品……
韦晨[17] 旅游吸引物(自然景观、风味美食……);旅游设施与服务(市内交通、购物……);旅游环境(价格水平、卫生状况……)
Relevant Research Around the Perception of Tourist Destinations, Urban Tourism Themes, etc.
一级指标 二级指标 特征示例词
旅游娱乐 A 特色美食 A1 甜品、茶餐厅、生蚝、牛腩
购物商场 A2 面膜、海港城、青衣城、护肤品
节事活动 A3 庆典、万圣节、舞火龙、新春
旅游游览 B 自然风光 B1 大屿山、海滨、麦理浩径、日落
人文景观 B2 渔村、教堂、博物馆、香港大学
现代城市景观 B3 中环半山扶梯、旺角、尖沙咀
主题乐园 B4 迪士尼乐园、海洋公园
旅游环境 C 气候环境 C1 小雨、天气、热、太阳
生态环境 C2 牛、清新、松叶、小溪、野猪
景区秩序 C3 排队、工作人员、服务态度
旅游服务 D 酒店 D1 住宿、半岛酒店、旅舍、民宿
旅行社 D2 旅行团、导游
旅游交通 E 本地交通 E1 天星小龙、缆车、地铁
城市对外交通 E2 飞机、高铁、航空公司、机场
城市氛围 F 城市治安 F1 社区服务、政府、交通警察
市容市貌 F2 干净、著名、繁华
市民素质 F3 居民、素质、本地人
其他 G 通行证、行程安排等 通行证、港币、流量
Description System of City Portrait
6]
">
The Process of LDA Model Generation[6]
字符 含义
Tit 时间窗口t下的主题
Tit+1 时间窗口t+1下的主题
Pk(Tit) Tit对应的主题-特征矩阵中的概率值
Pk(Tit+1) Tit+1对应的主题-特征矩阵中的概率值
The Meaning of Variables in the Topic Similarity Calculation Formula
时间窗口 游记数量 时间窗口 游记数量
2019.1 163 2019.7 233
2019.2 444 2019.8 93
2019.3 469 2019.9 77
2019.4 440 2019.10 89
2019.5 444 2019.11 40
2019.6 402 2019.12 49
The Amount of Urban Tourism Facet Data in Different Time Windows
Topic 1 概率 所属维度 Topic 2 概率 所属维度 Topic 3 概率 所属维度 Topic 4 概率 所属维度 Topic 5 概率 所属维度
香港海洋公园 0.013 B4 沙茶面 0.003 A1 油麻地 0.002 B3 大澳 0.019 B2 酒店 0.019 D1
酒店 0.005 D1 酒店 0.009 D1 旅舍 0.002 B1 挪亚方舟 0.010 B4 迪斯尼 0.010 B4
味道 0.004 A1 机场 0.008 E2 麦理浩 0.008 B1 餐厅 0.008 A1 山顶 0.008 B3
维多利亚港 0.003 B3 码头 0.008 E1 码头 0.006 E1 当代艺术中心 0.008 B4 地铁 0.008 E1
海洋公园 0.003 B4 维多利亚港 0.006 B3 装备 0.006 G 城市规划 0.007 F2 港币 0.007 G
甜品 0.003 A1 长洲岛 0.006 B1 西贡 0.004 B1 0.007 A1 中环 0.007 B3
拉面 0.003 A1 旺角 0.005 B2 水库 0.004 B2 小朋友 0.007 G 机场 0.007 E2
The Dimension Division of Each Topic Feature Word
主题 旅游娱乐 旅游游览 旅游环境 旅游服务 旅游交通 城市氛围 其他
Topic 1 0.056 0.046 0.003 0.005 0.010 0.001 0.010
Topic 2 0.031 0.061 0.013 0.010 0.031 0.000 0.012
Topic 3 0.007 0.053 0.019 0.002 0.018 0.001 0.005
Topic 4 0.048 0.101 0.015 0.000 0.042 0.013 0.022
Topic 5 0.035 0.111 0.004 0.028 0.064 0.002 0.023
The Cumulative Probability of Each Topic in Different Dimensions
Pre-Theme Theme Sim Theme Next-Theme Sim
1-topic1 2-topic6 0.959 5 2-topic1 3-topic10 0.967 6
1-topic2 2-topic3 0.954 6 2-topic2 3-topic10 0.986 7
1-topic3 2-topic3 0.986 1 2-topic3 3-topic23 0.981 5
1-topic4 2-topic3 0.951 7 2-topic4 3-topic26 0.987 3
1-topic5 2-topic4 0.981 0 2-topic5 3-topic11 0.981 8
2-topic6 3-topic4 0.997 0
2-topic7 3-topic1 0.986 8
Average 0.966 5 Average 0.984 1
The Calculation of Subject Relationship (Partial)
The Type of Association Between Topics
The Core Evolution Route of Urban Tourism Portrait (Partial)
所属阶段 主题 旅游娱乐 旅游游览 旅游环境 旅游服务 旅游交通 城市氛围 其他
1 2-topic2 0.030 0.100 0.018 0.001 0.010 0.002 0.006
2 3-topic10 0.045 0.207 0.053 0.000 0.040 0.004 0.033
3-topic8 0.008 0.196 0.077 0.000 0.055 0.000 0.028
3-topic11 0.014 0.175 0.004 0.000 0.006 0.014 0.011
3-topic21 0.027 0.136 0.008 0.004 0.038 0.004 0.001
3-topic2 0.037 0.064 0.021 0.012 0.031 0.005 0.030
3-topic7 0.038 0.083 0.017 0.022 0.025 0.002 0.018
3-topic16 0.041 0.084 0.011 0.035 0.01 0.000 0.026
3 4-topic5 0.017 0.127 0.032 0.005 0.028 0.001 0.012
4-topic8 0.035 0.137 0.017 0.033 0.044 0.002 0.053
4 6-topic5 0.015 0.130 0.005 0.019 0.02 0.000 0.029
The Probability Statistics of the First Dimension of the Theme Under the First Core Theme Evolution Path
[1] 杜智涛, 李纲. 面向精细化治理的城市画像: 构成要素与应用体系[J]. 图书情报知识, 2019(4):43-51.
[1] ( Du Zhitao, Li Gang. City Portrait Oriented to Refined Governance: Constitutive Elements and Application System[J]. Documentation, Information & Knowledge, 2019(4):43-51.)
[2] 张杨燚, 谢辉, 毛进, 等. 面向城市数据画像构建的多源数据需求与融合方法研究[J]. 情报理论与实践, 2020,43(6):88-96.
[2] ( Zhang Yangyi, Xie Hui, Mao Jin, et al. Multi-source Information Need and Data Fusion Methods Oriented to the Construction of City Profile[J]. Information Studies: Theory & Application, 2020,43(6):88-96.)
[3] 毕崇武, 叶光辉, 李明倩, 等. 基于标签语义挖掘的城市画像感知研究[J]. 数据分析与知识发现, 2019,3(12):41-51.
[3] ( Bi Chongwu, Ye Guanghui, Li Mingqian, et al. Discovering City Profile Based on Tag Semantic Mining[J]. Data Analysis and Knowledge Discovery, 2019,3(12):41-51.)
[4] 胡燕祝. 城市安全生产画像构建与应用探讨[J]. 安全, 2019,40(10):1-7.
[4] ( Hu Yanzhu. Discussion on the Construction and Application of Urban Safety Production Portrait[J]. Safety & Security. 2019,40(10):1-7.)
[5] 任思源, 郭斌, 张曼, 等. 寄递大数据城市画像[J]. 浙江大学学报(工学版), 2019,53(9):1779-1787.
[5] ( Ren Siyuan, Guo Bin, Zhang Man, et al. Urban Profiling Using Express Big Data[J]. Journal of Zhejiang University(Engineering Science), 2019,53(9):1779-1787.)
[6] 吴查科, 王树义. 基于LDA的国内图书馆学研究主题发现及演化研究[J]. 新世纪图书馆, 2019(7):90-96.
[6] ( Wu Chake, Wang Shuyi. Research on the Theme Discovery and Evolution of Domestic Library Science Research Based on LDA[J]. New Century Library, 2019(7):90-96.)
[7] 蒋翠清, 吕孝忠, 段锐. 基于主题模型的产品在线论坛主题演化分析[J]. 系统工程学报, 2019,34(5):598-609.
[7] ( Jiang Cuiqing, Lü Xiaozhong, Duan Rui. Analyzing Topic Evolution of Online Product Forum Based on Topic Model[J]. Journal of Systems Engineering, 2019,34(5):598-609.)
[8] 秦晓慧, 乐小虬. 基于LDA主题关联过滤的领域主题演化研究[J]. 现代图书情报技术, 2015(3):18-25.
[8] ( Qin Xiaohui, Le Xiaoqiu. Topic Evolution Research on a Certain Field Based on LDA Topic Association Filter[J]. New Technology of Library and Information Service, 2015(3):18-25.)
[9] 叶光辉, 徐彤. 基于演化分析的动态城市画像研究[J]. 数据分析与知识发现, 2020,4(9):100-110.
[9] ( Ye Guanghui, Xu Tong. Dynamic City Profile Based on Evolutionary Analysis[J]. Data Analysis and Knowledge Discovery, 2020,4(9):100-110.)
[10] 林奇·凯文. 城市的印象[M].项秉仁译. 北京: 中国建筑工业出版社, 1990.
[10] ( Lynch K. The Image of the City[M]. Translated by Xiang Bingren. Beijing: China Architecture & Building Press, 1990.)
[11] 李茜, 王东红, 李士娟. 西安市旅游目的地形象感知测量研究[J]. 西北大学学报(自然科学版), 2013,43(5):815-820.
[11] ( Li Qian, Wang Donghong, Li Shijuan. The Study on Tourism Destination Image Perception Measurement in Xi’an City[J]. Journal of Northwest University (Natural Science Edition), 2013,43(5):815-820.)
[12] 陆易. 基于内容分析法的杭州经济旅游感知要素评估的研究[J]. 现代营销(经营版), 2018(11):64-65.
[12] ( Lu Yi. Research on Evaluation of Hangzhou Economic Tourism Perception Elements Based on Content Analysis[J]. Modern Marketing (Business Edition), 2018(11):64-65.)
[13] 马天, 屈册. 大陆游者台湾旅游目的地形象感知与情感分析[J]. 商业研究, 2014(9):169-174.
[13] ( Ma Tian, Qu Ce. Perceptions and Emotional Analysis of Tourism Destination Image of Taiwan from Mainland China Tourists[J]. Commercial Research, 2014(9):169-174.)
[14] 张文, 顿雪霏. 探讨大陆游客对台湾旅游目的地形象的感知——基于网上游记的内容分析[J]. 北京第二外国语学院学报, 2010,32(11):75-83.
[14] ( Zhang Wen, Dun Xuefei. Study on Image Perception of Mainland Tourists to Taiwan——Based on Content Analysis of Online Travels[J]. Journal of Beijing International Studies University, 2010,32(11):75-83.)
[15] Gallarza M G, Saura I G, Garcı́a H C. Destination Image: Towards a Conceptual Framework[J]. Annals of Tourism Research, 2002,29(1):56-78.
doi: 10.1016/S0160-7383(01)00031-7
[16] 陈建明. 旅游目的地形象感知分析——以湘西凤凰古城为例[D]. 长沙:中南林业科技大学, 2007.
[16] ( Chen Jianming. The Analysis of the Tourist Destination Image Perception——A Case Study of Xiangxi Fenghuang[D]. Changsha: Central South University of Forestry and Technology, 2007.)
[17] 韦晨. 基于游客情感分析的旅游地形象感知测量——以南京夫子庙秦淮风光带为例[D]. 南京: 南京师范大学, 2017.
[17] ( Wei Chen. Tourism Destination Image Perception Measurement Based on Tourist Sentiment Analysis——Taking the Confucius Temple in Nanjing for Example[D]. Nanjing: Nanjing Normal University, 2017.)
[18] 梁晨晨, 李仁杰. 综合LDA与特征维度的丽江古城意象感知分析[J]. 地理科学进展, 2020,39(4):614-626.
[18] ( Liang Chenchen, Li Renjie. Tourism Destination Image Perception Analysis Based on the Latent Dirichlet Allocation Model and Dominant Semantic Dimensions: A Case of the Old Town of Lijiang[J]. Progress in Geography, 2020,39(4):614-626.)
[19] 颜端武, 苏琼, 张馨月. 基于时序主题关联演化的科学领域前沿探测研究[J]. 情报理论与实践, 2019,42(7):144-150.
[19] ( Yan Duanwu, Su Qiong, Zhang Xinyue. Research on Frontier Detection in Scientific Field Based on Sequential Topic Association Evolution[J]. Information Studies: Theory & Application, 2019,42(7):144-150.)
[20] Kano N, Seraku N, Takahashi F, et al. Attractive Quality and Must-Be Quality[J]. The Journal of the Japanese Society for Quality Control, 1984,14(2):39-48.
[21] 张丹. 基于网络文本分析的旅游目的地形象感知研究——以香港为例[J]. 旅游纵览(下半月), 2019(1):31-32.
[21] ( Zhang Dan. Research on Image Perception of Tourist Destination Based on Web Text Analysis: A Case Study of Hongkong[J]. Tourism Overview, 2019(1):31-32.)
[1] Ye Guanghui,Xu Tong. Dynamic City Profile Based on Evolutionary Analysis[J]. 数据分析与知识发现, 2020, 4(9): 100-110.
[2] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[3] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[4] Yunfei Shao,Dongsu Liu. Classifying Short-texts with Class Feature Extension[J]. 数据分析与知识发现, 2019, 3(9): 60-67.
[5] Chongwu Bi,Guanghui Ye,Mingqian Li,Jieyan Zeng. Discovering City Profile Based on Tag Semantic Mining[J]. 数据分析与知识发现, 2019, 3(12): 41-51.
[6] Xu Yanhua,Miao Yujie,Miao Lin,Lv Xueqiang. Generating HSK Writing Essays with LDA Model[J]. 数据分析与知识发现, 2018, 2(9): 80-87.
[7] Wang Li,Zou Lixue,Liu Xiwen. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[8] Wang Jingqi,Li Rui,Wu Huayi. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[9] Qu Jiabin,Ou Shiyan. Analyzing Topic Evolution with Topic Filtering and Relevance[J]. 数据分析与知识发现, 2018, 2(1): 64-75.
[10] Li Zhen,Ding Shengchun,Wang Nan. Identifying Topics of Online Public Opinion[J]. 数据分析与知识发现, 2017, 1(8): 18-30.
[11] Fang Xiaofei,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Wang Xiaohua. Identifying Hot Topics from Mobile Complaint Texts[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[12] Liu Bingyao,Ma Jing,Li Xiaofeng. Topic Representation Model Based on “Feature Dimensionality Reduction”[J]. 数据分析与知识发现, 2017, 1(11): 53-61.
[13] Zhang Lei,Ma Jing,Li Dandan,Shen Yang. Hypernetwork Model for Semantic Social Network and Automatic Identification of Key Nodes[J]. 现代图书情报技术, 2016, 32(3): 8-17.
[14] Ruyi Yang,Dongsu Liu,Hui Li. An Improved Topic Model Integrating Extra-Features[J]. 现代图书情报技术, 2016, 32(1): 48-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn