|
|
Extraction and Representation of Domain Knowledge with Semantic Description Model and Knowledge Elements——Case Study of Information Retrieval |
Shi Xiang,Liu Ping( ) |
School of Information Management, Wuhan University, Wuhan 430072, China |
|
|
Abstract [Objective] This paper tries to extract and integrate domain knowledge from heterogeneous data based on knowledge elements, aiming to enrich the semantic information of knowledge representation. [Methods] We proposed a new method to extract and represent knowledge based on the semantic description model with knowledge elements. Then, we examined our model in the field of information retrieval. [Results] We extracted 4,200 knowledge elements and 3,020 entities on information retrieval from Wikipedia and two classic textbooks. We could query the relationship between knowledge elements and their entities. [Limitations] The semantic relations among knowledge elements were not adequately explored, and the process of knowledge extraction was not fully automated. [Conclusions] This paper improves the semantics of knowledge representation, and provides new perspectives for domain knowledge service.
|
Received: 17 August 2020
Published: 24 November 2020
|
|
Fund:National Natural Science Foundation of China(71573196) |
Corresponding Authors:
Liu Ping
E-mail: pliuleeds@126.com
|
[1] |
张立, 吴素平, 周丹. 国内外知识服务相关概念追踪与辨析[J]. 科技与出版, 2020,39(2):5-12.
|
[1] |
( Zhang Li, Wu Suping, Zhou Dan. Tracking and Discrimination of Related Concepts of Knowledge Service at Home and Abroad[J]. Science-Technology & Publication, 2020,39(2):5-12.)
|
[2] |
方俊伟, 崔浩冉, 贺国秀, 等. 基于先验知识TextRank的学术文本关键词抽取[J]. 情报科学, 2019,37(3):75-80.
|
[2] |
( Fang Junwei, Cui Haoran, He Guoxiu, et al. Keyword Extraction of Academic Text with TextRank Model Based on Prior[J]. Information Science, 2019,37(3):75-80.)
|
[3] |
王忠义, 夏立新, 李玉海. 基于知识内容的数字图书馆跨学科多粒度知识表示模型构建[J]. 中国图书馆学报, 2019,45(6):50-64.
|
[3] |
( Wang Zhongyi, Xia Lixin, Li Yuhai. Construction of Interdisciplinary Multi-Granularity Knowledge Representation Model in Digital Library Based on Knowledge Content[J]. Journal of Library Science in China, 2019,45(6):50-64.)
|
[4] |
张肃, 许慧. 基于知识图谱的企业知识服务模型构建研究[J]. 情报科学, 2020,38(8):68-73.
|
[4] |
( Zhang Su, Xu Hui. Construction of Enterprise Knowledge Service Model Based on Knowledge Map[J]. Information Science, 2020,38(8):68-73.)
|
[5] |
Fawei B, Pan J Z, Kollingbaum M, et al. A Semi-automated Ontology Construction for Legal Question Answering[J]. New Generation Computing, 2019,37(9):453-478.
doi: 10.1007/s00354-019-00070-2
|
[6] |
童名文, 牛琳, 杨琳, 等. 课程本体自动构建技术研究[J]. 计算机科学, 2016,43(S2):108-112.
|
[6] |
( Tong Mingwen, Niu Lin, Yang Lin, et al. Research on Technique of Course Ontology Automatically Constructing[J]. Computer Science, 2016,43(S2):108-112.)
|
[7] |
Kashyap V, Borgida A. Representing the UMLS® Semantic Network Using OWL[C]// Proceedings of International Semantic Web Conference. 2003: 1-16.
|
[8] |
Rizvi R F, Jake V, Adam T J, et al. iDISK: The Integrated DIetary Supplements Knowledge Base[J]. Journal of the American Medical Informatics Association, 2012,27(4):539-548.
doi: 10.1093/jamia/ocz216
|
[9] |
Miwa M, Bansal M. End-to-End Relation Extraction Using LSTMs on Sequences and Tree Structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 1105-1116.
|
[10] |
秦春秀, 杨智娟, 赵捧未, 等. 面向科技文献知识表示的知识元本体模型[J]. 图书情报工作, 2018,62(3):94-103.
|
[10] |
( Qin Chunxiu, Yang Zhijuan, Zhao Pengwei, et al. The Knowledge Element Ontology Model of Scientific Literature for Knowledge Representation[J]. Library and Information Service, 2018,62(3):94-103.)
|
[11] |
李贺, 杜杏叶. 基于知识元的学术论文内容创新性智能化评价研究[J]. 图书情报工作, 2020,64(1):93-104.
|
[11] |
( Li He, Du Xingye. Research on Intelligent Evaluation for the Content Innovation of Academic Papers[J]. Library and Information Service, 2020,64(1):93-104.)
|
[12] |
王萍, 王美月, 王益成, 等. 政府网站信息资源知识元模型与可视化表征研究[J]. 图书情报工作, 2018,62(23):14-21.
|
[12] |
( Wang Ping, Wang Meiyue, Wang Yicheng, et al. Study on Knowledge Element Model and Visual Representation of Government Website Information Resources[J]. Library and Information Service, 2018,62(23):14-21.)
|
[13] |
李晓飞. 基于知识元的网络学习资源聚合模型设计与应用研究[D]. 武汉:华中师范大学, 2017.
|
[13] |
( Li Xiaofei. Research on the Design and Application of Network Learning Resource Aggregation Model Based on Knowledge Element[D]. Wuhan: Central China Normal University, 2017.)
|
[14] |
Liao K J, Xiong H H, Ye D H, et al. A Method of Emergency Management Based on Knowledge Element Theory[J]. Journal of Software, 2012,7(1):41-48.
|
[15] |
李振, 周东岱. 教育知识图谱的概念模型与构建方法研究[J]. 电化教育研究, 2019,40(8):78-86,113.
|
[15] |
( Li Zhen, Zhou Dongdai. Research on Conceptual Model and Construction Method of Educational Knowledge Graph[J]. e-Education Research, 2019,40(8):78-86,113.)
|
[16] |
袁满, 仇婷婷, 胡超. 细粒度课程知识元组织模型及知识图谱实现[J]. 吉林大学学报(信息科学版), 2019,37(5):526-532.
|
[16] |
( Yuan Man, Qiu Tingting, Hu Chao. Fine-Grained Course Knowledge Meta-Organization Model and Knowledge Graph Implementation[J]. Journal of Jilin University (Information Science Edition), 2019,37(5):526-532.)
|
[17] |
谭荧, 唐亦非. 面向科学文献的事实知识元自动抽取方法研究[J]. 情报科学, 2020,38(4):23-27,36.
|
[17] |
( Tan Ying, Tang Yifei. Automatic Extraction of Factual Knowledge Element from Scientific Literature[J]. Information Science, 2020,38(4):23-27, 36.)
|
[18] |
Xie N F, Wei X, Hao X N. Research on Knowledge Element Relation and Knowledge Service for Agricultural Literature Resource[C]// Proceedings of the 3rd International Conference on Innovation in Artificial Intelligence. 2019: 172-176.
|
[19] |
冯琴荣, 苗夺谦, 程昳, 等. 知识的划分粒度表示法[J]. 模式识别与人工智能, 2009,22(1):64-69.
|
[19] |
( Feng Qinrong, Miao Duoqian, Cheng Yi, et al. Knowledge Representation Using Partition Granularity[J]. Pattern Recognition and Artificial Intelligence, 2009,22(1):64-69.)
|
[20] |
Jiang L, Yang Z K, Wang J X. Knowledge Indexing of Chinese Text Based Knowledge Element[C]// Proceedings of the 1st International Symposium on Knowledge Acquisition & Modeling. 2008: 35-38.
|
[21] |
高国伟, 王亚杰, 李佳卉, 等. 基于知识元的知识库架构模型研究[J]. 情报科学, 2016,34(3):37-41.
|
[21] |
( Gao Guowei, Wang Yajie, Li Jiahui, et al. Knowledge Base Frame Structure Research Based on Knowledge Element[J]. Information Science, 2016,34(3):37-41.)
|
[22] |
戎军涛. 学术文献内容知识元语义描述模型研究[J]. 情报科学, 2019,37(7):30-35.
|
[22] |
( Rong Juntao. Semantic Description Model of Academic Literature Content Based on Knowledge Element[J]. Information Science, 2019,37(7):30-35.)
|
[23] |
索传军, 盖双双. 知识元的内涵、结构与描述模型研究[J]. 中国图书馆学报, 2018,44(4):54-72.
|
[23] |
( Suo Chuanjun, Gai Shuangshuang. The Connotation, Structure and Description Model of Knowledge Unit[J]. Journal of Library Science in China, 2018,44(4):54-72.)
|
[24] |
付蕾. 知识元标引系统的设计与实现[D]. 武汉:华中师范大学, 2009.
|
[24] |
( Fu Lei. Design and Implementation of Knowledge Element Indexing System[D]. Wuhan: Central China Normal University, 2009.)
|
[25] |
Mihalcea R, Tarau P. TextRank: Bringing Order into Texts[C]// Proceedings of the 9th Conference on Empirical Methods in Natural Language Processing. 2004: 404-411.
|
[26] |
王洋洋. 基于海量学术资源的知识元抽取研究[D]. 宁波: 宁波大学, 2014.
|
[26] |
( Wang Yangyang. Research on Knowledge Extraction Based on Massive Academic Resources[D]. Ningbo: Ningbo University, 2014.)
|
[27] |
Dong C H, Zhang J J, Zong C Q, et al. Character-based LSTM-CRF with Radical-level Features for Chinese Named Recognition[C]// Proceedings of the 24th International Conference on Computer Processing of Oriental Languages. 2016: 239-250.
|
[28] |
Zhou P, Shi W, Tian J, et al. Bidirectional Long Short-Term Memory Networks for Relation Classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2016: 207-212.
|
[29] |
克里斯托弗·D·曼宁, 普拉巴卡尔·拉格万, 亨里奇·辛里奇. 信息检索导论[M]. 王斌译. 北京:人民邮电出版社, 2010.
|
[29] |
( Manning C D, Raghavan P, Schütze H. Introduction to Information Retrieval[M]. Translated by Wang Bin. Beijing: Posts & Telecom Press, 2010.)
|
[30] |
贝萨耶茨·里卡多, 里贝内托·贝蒂埃. 现代信息检索[M].黄萱菁, 张奇, 邱锡鹏译. 第2版. 北京: 机械工业出版社, 2012.
|
[30] |
( Ricardo B Y, Berthier R. Modern Information Retrieval[M]. Translated by Huang Xuanjing, Zhang Qi, Qiu Xipeng. The 2nd Edition. Beijing: China Machine Press, 2012.)
|
[31] |
余丽, 钱力, 付常雷, 等. 基于深度学习的文本中细粒度知识元抽取方法研究[J]. 数据分析与知识发现, 2019,3(1):38-45.
|
[31] |
( Yu Li, Qian Li, Fu Changlei, et al. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. Data Analysis and Knowledge Discovery, 2019,3(1):38-45.)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|