|
|
Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms |
Ma Yingxue,Zhao Jichang( ) |
School of Economics and Management, Beihang University, Beijing 100191, China |
|
|
Abstract [Objective] This study reveals patterns and evolution of public opinion on Weibo during natural disasters from the perspectives of trending topics and information dissemination. [Methods] We proposed a machine learning approach to extract the valid data of natural disasters from Weibo. Then, we employed a deep learning model to cluster these textual posts. Finally, we investigated the information dissemination patterns with complex network analysis. [Results] The accuracy of our extractor for valid disaster information reached 0.82. The clusters of textual posts indicated the changes of trending topics. The structure of information dissemination during disasters was sparse. The sizes of online communities expanded constantly while their distribution unchanged. Users in different regions had different preferences for information sources. [Limitations] We did not conduct experiment to examine data from different social platforms. [Conclusions] The proposed method could effectively identify public opinion events during natural disasters.
|
Received: 15 December 2020
Published: 06 July 2021
|
|
Fund:National Natural Science Foundation of China(71871006) |
Corresponding Authors:
Zhao Jichang
E-mail: jichang@buaa.edu.cn
|
[1] |
Alexander D E. Social Media in Disaster Risk Reduction and Crisis Management[J]. Science and Engineering Ethics, 2014,20(3):717-733.
doi: 10.1007/s11948-013-9502-z
pmid: 24306994
|
[2] |
Yin J, Karimi S, Lampert A, et al. Using Social Media to Enhance Emergency Situation Awareness[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2015.
|
[3] |
Imran M, Castillo C. Towards a Data-Driven Approach to Identify Crisis-Related Topics in Social Media Streams[C]// Proceedings of the 24th International Conference on World Wide Web. 2015: 1205-1210.
|
[4] |
Kejriwal M, Zhou P L. Low-Supervision Urgency Detection and Transfer in Short Crisis Messages[C]// Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2019: 353-356.
|
[5] |
Chae J, Thom D, Jang Y, et al. Public Behavior Response Analysis in Disaster Events Utilizing Visual Analytics of Microblog Data[J]. Computers & Graphics, 2014,38:51-60.
doi: 10.1016/j.cag.2013.10.008
|
[6] |
Cresci S, Cimino A, Dell’Orletta F, et al. Crisis Mapping During Natural Disasters via Text Analysis of Social Media Messages[C]// Proceedings of 2015 International Conference on Web Information Systems Engineering. 2015: 250-258.
|
[7] |
Kryvasheyeu Y, Chen H H, Obradovich N, et al. Rapid Assessment of Disaster Damage Using Social Media Activity[J]. Science Advances, 2016,2(3):e1500779.
doi: 10.1126/sciadv.1500779
|
[8] |
Nguyen D T, Ofli F, Imran M, et al. Damage Assessment from Social Media Imagery Data During Disasters[C]// Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2017.
|
[9] |
Madichetty S, Muthukumarasamy S. Disaster Damage Assessment from the Tweets Using the Combination of Statistical Features and Informative Words[J]. Social Network Analysis and Mining, 2019,9(1):42.
doi: 10.1007/s13278-019-0579-5
|
[10] |
Resch B, Usländer F, Havas C. Combining Machine-Learning Topic Models and Spatiotemporal Analysis of Social Media Data for Disaster Footprint and Damage Assessment[J]. Cartography and Geographic Information Science, 2018,45(4):362-376.
doi: 10.1080/15230406.2017.1356242
|
[11] |
Fast S M, González M C, Wilson J M, et al. Modelling the Propagation of Social Response During a Disease Outbreak[J]. Journal of the Royal Society Interface, 2015,12(104):20141105.
doi: 10.1098/rsif.2014.1105
|
[12] |
Yang D, Chow T W, Zhong L, et al. True and Fake Information Spreading over the Facebook[J]. Physica A: Statistical Mechanics and Its Applications, 2018,505:984-994.
doi: 10.1016/j.physa.2018.04.026
|
[13] |
Zeng L, Starbird K, Spiro E S. Rumors at the Speed of Light? Modeling the Rate of Rumor Transmission During Crisis[C]// Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS). 2016: 1969-1978.
|
[14] |
Yuan R F, Zhou Q F, Zhou W B. dTexSL: A Dynamic Disaster Textual Storyline Generating Framework[J]. World Wide Web, 2019,22(5):1913-1933.
doi: 10.1007/s11280-018-0640-8
|
[15] |
Shan S Q, Zhao F, Wei Y G, et al. Disaster Management 2.0: A Real-Time Disaster Damage Assessment Model Based on Mobile Social Media Data—A Case Study of Weibo (Chinese Twitter)[J]. Safety Science, 2019,115:393-413.
doi: 10.1016/j.ssci.2019.02.029
|
[16] |
Imran M, Elbassuoni S, Castillo C, et al. Practical Extraction of Disaster-Relevant Information from Social Media[C]// Proceedings of the 22nd International Conference on World Wide Web. 2013: 1021-1024.
|
[17] |
Imran M, Elbassuoni S, Castillo C, et al. Extracting Information Nuggets from Disaster-Related Messages in Social Media[C]// Proceedings of the 10th International ISCRAM Conference. 2013.
|
[18] |
Nguyen D T, Joty S, Imran M, et al. Applications of Online Deep Learning for Crisis Response Using Social Media Information[OL]. arXiv Preprint, arXiv:1610.01030.
|
[19] |
Interdonato R, Guillaume J L, Doucet A. A Lightweight and Multilingual Framework for Crisis Information Extraction from Twitter Data[J]. Social Network Analysis and Mining, 2019,9(1):65.
doi: 10.1007/s13278-019-0608-4
|
[20] |
Kim J, Hastak M. Social Network Analysis: Characteristics of Online Social Networks after a Disaster[J]. International Journal of Information Management, 2018,38(1):86-96.
doi: 10.1016/j.ijinfomgt.2017.08.003
|
[21] |
Niles M T, Emery B F, Reagan A J, et al. Social Media Usage Patterns During Natural Hazards[J]. PLoS One, 2019,14(2):e0210484.
doi: 10.1371/journal.pone.0210484
|
[22] |
Kryvasheyeu Y, Chen H H, Moro E, et al. Performance of Social Network Sensors During Hurricane Sandy[J]. PLoS one, 2015,10(2):e0117288.
doi: 10.1371/journal.pone.0117288
|
[23] |
Li L F, Zhang Q P, Tian J, et al. Characterizing Information Propagation Patterns in Emergencies: A Case Study with Yiliang Earthquake[J]. International Journal of Information Management, 2018,38(1):34-41.
doi: 10.1016/j.ijinfomgt.2017.08.008
|
[24] |
Shi B W, Zhao J C, Xu K. A Word2Vec Model for Sentiment Analysis of Weibo[C]// Proceedings of the 16th International Conference on Service Systems and Service Management (ICSSSM). IEEE, 2019: 1-6.
|
[25] |
Xie J Y, Girshick R, Farhadi A. Unsupervised Deep Embedding for Clustering Analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. 2016: 478-487.
|
[26] |
Borge-Holthoefer J, Rivero A, García I, et al. Structural and Dynamical Patterns on Online Social Networks: The Spanish May 15th Movement as a Case Study[J]. PLoS One, 2011,6(8):e23883.
doi: 10.1371/journal.pone.0023883
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|