|
|
Topic Evolution of Online Reviews for Crowdfunding Campaigns |
Wang Wei1,Gao Ning1,Xu Yuting1,Wang Hongwei2( ) |
1Business School, Huaqiao University, Quanzhou 362021, China 2School of Economics and Management, Tongji University, Shanghai 200092, China |
|
|
Abstract [Objective] This paper reveals the change of uers’ interests in the crowdfunding projects and analyzes the dynamic evolution of their online comments on these projects. [Methods] First, we retrieved 497,936 online comments on 6,537 technology-related projects from Kickstarter as corpus. Then, with the help of LDA model, we analyzed the topic evolution of these comments. Finally, we obtained the dynamic evolution model of the topics with the help of cosine similarity. [Results] In the initial stage of financing, the comments were mainly on basic project information. Then, the comments focused on return of investments and product information. In the final stage, these comments were on the shipping issues. For successful projects, the topics developed from project description to waiting time for products and deliveries. For the failed projects, the comments gradually evolved into the possible relaunch and prospect of a new project. [Limitations] We did not distinguish the project categories, which need to be analyzed in the future. This paper only examined the reward based crowdfunding model, which also needs to be expanded. [Conclusions] This article analyzes reviews of online crowdfunding projects and expands the application of LDA in the field of crowdfunding, which provides practical suggestion for platforms, project sponsors and investors.
|
Received: 10 January 2021
Published: 23 November 2021
|
|
Fund:National Natural Science Foundation of China(72072062);National Natural Science Foundation of China(71771177);Natural Science Foundation of Fujian Province(2020J01782) |
Corresponding Authors:
Wang Hongwei,ORCID:0000-0003-0814-3498
E-mail: hwwang@tongji.edu.cn
|
[1] |
Büschken J, Allenby G M. Sentence-Based Text Analysis for Customer Reviews[J]. Marketing Science, 2016, 35(6): 953-975.
doi: 10.1287/mksc.2016.0993
|
[2] |
蒋翠清, 吕孝忠, 段锐. 基于主题模型的产品在线论坛主题演化分析[J]. 系统工程学报, 2019, 34(5): 598-609.
|
[2] |
(Jiang Cuiqing, Lv Xiaozhong, Duan Rui. Analyzing Topic Evolution of Online Product Forum Based on Topic Model[J]. Journal of Systems Engineering, 2019, 34(5): 598-609.)
|
[3] |
Usman S M, Bukhari F A S, Usman M, et al. Does the Role of Media and Founder’s Past Success Mitigate the Problem of Information Asymmetry? Evidence from a UK Crowdfunding Platform[J]. Sustainability, 2019, 11(3): 692.
doi: 10.3390/su11030692
|
[4] |
Brem A, Bilgram V, Marchuk A. How Crowdfunding Platforms Change the Nature of User Innovation: From Problem Solving to Entrepreneurship[J]. Technological Forecasting and Social Change, 2019, 144: 348-360.
doi: 10.1016/j.techfore.2017.11.020
|
[5] |
Cumming D J, Johan S A, Zhang Y L. The Role of Due Diligence in Crowdfunding Platforms[J]. Journal of Banking & Finance, 2019, 108: 105661.
doi: 10.1016/j.jbankfin.2019.105661
|
[6] |
Cox J, Nguyen T. Does the Crowd Mean Business? An Analysis of Rewards-Based Crowdfunding as a Source of Finance for Start-ups and Small Businesses[J]. Journal of Small Business and Enterprise Development, 2018, 25(1): 147-162.
doi: 10.1108/JSBED-05-2017-0165
|
[7] |
沈卓, 李艳. 基于PreLM-FT细粒度情感分析的餐饮业用户评论挖掘[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
|
[7] |
(Shen Zhuo, Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. Data Analysis and Knowledge Discovery, 2020, 4(4): 63-71.)
|
[8] |
刘倩, 李晨亮. 基于社交媒体的话题演变研究综述[J]. 数据分析与知识发现, 2020, 4(8): 1-14.
|
[8] |
(Liu Qian, Li Chenliang. A Survey of Topic Evolution on Social Media[J]. Data Analysis and Knowledge Discovery, 2020, 4(8): 1-14.)
|
[9] |
王珠美, 胡彦蓉, 刘洪久. 基于LDA主题模型和直觉模糊TOPSIS的农产品在线评论情感分析[J]. 数据采集与处理, 2020, 35(5): 965-977.
|
[9] |
(Wang Zhumei, Hu Yanrong, Liu Hongjiu. Emotional Analysis of Agricultural Product Online Reviews Based on LDA Thematic Model and Intuitionistic Fuzzy TOPSIS[J]. Journal of Data Acquisition and Processing, 2020, 35(5): 965-977.)
|
[10] |
王伟, 陈伟, 祝效国, 等. 众筹融资成功率与语言风格的说服性: 基于Kickstarter的实证研究[J]. 管理世界, 2016(5): 81-98.
|
[10] |
(Wang Wei, Chen Wei, Zhu Xiaoguo, et al. Success Rate of Crowdfunding and Persuasion of Language Style: An Empirical Study Based on Kickstarter[J]. Management World, 2016(5): 81-98.)
|
[11] |
王伟, 何翎, Kevin Zhu, 等. 更新信号的阶段性融资效应:基于众筹市场的跨类别实证研究[J]. 中国管理科学, 2020, 28(11): 155-166.
|
[11] |
(Wang Wei, He Ling, Kevin Zhu, et al. The Periodic Impact of Linguistic Cues to Update Signalson Successful Crowdfunding Campaigns Among Categories[J]. Chinese Journal of Management Science, 2020, 28(11): 155-166.)
|
[12] |
Wang Y L, Kim K, Lee B, et al. Word Clustering Based on POS Feature for Efficient Twitter Sentiment Analysis[J]. Human-Centric Computing and Information Sciences, 2018, 8(1): 1-25.
doi: 10.1186/s13673-017-0124-3
|
[13] |
史达, 王乐乐, 衣博文. 在线评论有用性的深度数据挖掘: 基于TripAdvisor的酒店评论数据[J]. 南开管理评论, 2020, 23(5): 64-75.
|
[13] |
(Shi Da, Wang Lele, Yi Bowen. Deep Data Mining for Online Reviews Usefulness: Hotel Reviews Data on TripAdvisor[J]. NanKai Business Review, 2020, 23(5): 64-75.)
|
[14] |
Yang B, Liu Y, Liang Y, et al. Exploiting User Experience from Online Customer Reviews for Product Design[J]. International Journal of Information Management, 2019, 46: 173-186.
doi: 10.1016/j.ijinfomgt.2018.12.006
|
[15] |
Hu N, Zhang T, Gao B J, et al. What do Hotel Customers Complain About? Text Analysis Using Structural Topic Model[J]. Tourism Management, 2019, 72: 417-426.
doi: 10.1016/j.tourman.2019.01.002
|
[16] |
Shafqat W, Byun Y. Identifying Topics: Analysis of Crowdfunding Comments in Scam Campaigns [C]//Proceedings of International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. 2018: 137-148.
|
[17] |
徐红姣, 曾文, 张运良. 基于Word2Vec的论文和专利主题关联演化分析方法研究[J]. 情报杂志, 2018, 37(12): 36-42.
|
[17] |
(Xu Hongjiao, Zeng Wen, Zhang Yunliang. Paper-Patent Topic Linkage Evolution Analysis Method Based on Word2Vec[J]. Journal of Intelligence, 2018, 37(12): 36-42.)
|
[18] |
张宝建, 李鹏利, 陈劲, 等. 国家科技创新政策的主题分析与演化过程: 基于文本挖掘的视角[J]. 科学学与科学技术管理, 2019, 40(11): 15-31.
|
[18] |
(Zhang Baojian, Li Pengli, Chen Jin, et al. Thematic Analysis and Evolution Process of National Science and Technology Innovation Policy: Based on the Perspective of Text Mining[J]. Science of Science and Management of S.&T., 2019, 40(11): 15-31.)
|
[19] |
王扶东, 王苑潼. 基于LDA模型的国内“一带一路”文献主题研究[J]. 情报探索, 2019(11): 129-134.
|
[19] |
(Wang Fudong, Wang Yuantong. Subject Analysis of Researches on the Belt and Road in China Based on LDA Model[J]. Information Research, 2019 (11): 129-134.)
|
[20] |
朱晓霞, 宋嘉欣, 孟建芳. 基于动态主题-情感演化模型的网络舆情信息分析[J]. 情报科学, 2019, 37(7): 72-78.
|
[20] |
(Zhu Xiaoxia, Song Jiaxin, Meng Jianfang. Analysis of Online Public Opinion Information Based on the Dynamic Theme-Emotion Evolution Model[J]. Information Science, 2019, 37(7): 72-78.)
|
[21] |
李慧, 胡云凤. 基于动态情感主题模型的在线评论分析[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
|
[21] |
(Li Hui, Hu Yunfeng. Analyzing Online Reviews with Dynamic Sentiment Topic Model[J]. Data Analysis and Knowledge Discovery, 2017, 1(9): 74-82.)
|
[22] |
Glynn C, Tokdar S T, Howard B, et al. Bayesian Analysis of Dynamic Linear Topic Models[J]. Bayesian Analysis, 2019, 14(1): 53-80.
|
[23] |
段尧清, 尚婷, 周密. 我国政务大数据政策扩散特征与主题分析[J]. 图书情报工作, 2020, 64(13): 133-139.
|
[23] |
(Duan Yaoqing, Shang Ting, Zhou Mi. Analysis on the Characteristics and Subjects of China’s Government Big Data Policy Diffusion[J]. Library and Information Service, 2020, 64(13): 133-139.)
|
[24] |
Lehečka J, Pražák A. Online LDA-Based Language Model Adaptation [C]//Proceedings of International Conference on Text, Speech, and Dialogue. 2018: 334-341.
|
[25] |
Yao F, Wang Y. Tracking Urban Geo-topics Based on Dynamic Topic Model[J]. Computers, Environment and Urban Systems, 2020, 79: 101419.
doi: 10.1016/j.compenvurbsys.2019.101419
|
[26] |
Wang X R, McCallum A. Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends [C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006: 424-433.
|
[27] |
林丽丽, 马秀峰. 基于LDA模型的国内图书情报学研究主题发现及演化分析[J]. 情报科学, 2019, 37(12): 87-92.
|
[27] |
(Lin Lili, Ma Xiufeng. The Theme Discovery and Evolution Analysis of Domestic Library and Information Science Research Based on LDA[J]. Information Science, 2019, 37(12): 87-92.)
|
[28] |
曲佳彬, 欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现, 2018, 2(1): 64-75.
|
[28] |
(Qu Jiabin, Ou Shiyan. Analyzing Topic Evolution with Topic Filtering and Relevance[J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 64-75.)
|
[29] |
Blei D M, Lafferty J D. Dynamic Topic Models [C]//Proceedings of the 23rd International Conference on Machine Learning. 2006: 113-120.
|
[30] |
楚克明, 李芳. 基于LDA模型的新闻话题的演化[J]. 计算机应用与软件, 2011, 28(4): 4-7, 26.
|
[30] |
(Chu Keming, Li Fang. LDA Model-based News Topic Evolution[J]. Computer Applications and Software, 2011, 28(4): 4-7, 26.)
|
[31] |
胡吉明, 陈果. 基于动态LDA主题模型的内容主题挖掘与演化[J]. 图书情报工作, 2014, 58(2): 138-142.
|
[31] |
(Hu Jiming, Chen Guo. Mining and Evolution of Content Topics Based on Dynamic LDA[J]. Library and Information Service, 2014, 58(2): 138-142.)
|
[32] |
Lv N, Luo J Y, Liu Y, et al. Analysis of Topic Evolution Based on Subtopic Similarity [C]//Proceedings of 2009 International Conference on Computational Intelligence and Natural Computing. 2009: 506-509.
|
[33] |
秦晓慧, 乐小虬. 基于LDA主题关联过滤的领域主题演化研究[J]. 现代图书情报技术, 2015(3): 18-25.
|
[33] |
(Qin Xiaohui, Le Xiaoqiu. Topic Evolution Research on a Certain Field Based on LDA Topic Association Filter[J]. New Technology of Library and Information Service, 2015(3): 18-25.)
|
[34] |
Korfiatis N, Stamolampros P, Kourouthanassis P, et al. Measuring Service Quality from Unstructured Data: A Topic Modeling Application on Airline Passengers’ Online Reviews[J]. Expert Systems with Applications, 2019, 116: 472-486.
doi: 10.1016/j.eswa.2018.09.037
|
[35] |
Rossetti M, Stella F, Zanker M. Analyzing User Reviews in Tourism with Topic Models[J]. Information Technology & Tourism, 2016, 16(1): 5-21.
|
[36] |
Saura J R, Palos-Sanchez P, Grilo A. Detecting Indicators for Startup Business Success: Sentiment Analysis Using Text Data Mining[J]. Sustainability, 2019, 11(3): 917.
doi: 10.3390/su11030917
|
[37] |
舒文琛, 周恩国, 李岱峰, 等. 基于合著网络社区发现的情报学研究主题演化分析[J]. 情报科学, 2020, 38(1): 75-81.
|
[37] |
(Shu Wenchen, Zhou Enguo, Li Daifeng, et al. An Analysis of the Evolution of Informatics Research Themes Based on Co-authored Network Community Discovery[J]. Information Science, 2020, 38(1): 75-81.)
|
[38] |
Yin F L, Lv J H, Zhang X J, et al. COVID-19 Information Propagation Dynamics in the Chinese Sina-Microblog[J]. Mathematical Biosciences Engineering, 2020, 17(3): 2676-2692.
doi: 10.3934/mbe.2020146
|
[39] |
关鹏, 王曰芬, 傅柱. 基于LDA的主题语义演化分析方法研究: 以锂离子电池领域为例[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
|
[39] |
(Guan Peng, Wang Yuefen, Fu Zhu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. Data Analysis and Knowledge Discovery, 2019, 3(7): 61-72.)
|
[40] |
Huang L, Ma J Y, Chen C L. Topic Detection from Microblogs Using T-LDA and Perplexity [C]//Proceedings of the 24th Asia-Pacific Software Engineering Conference Workshops. 2017: 71-77.
|
[41] |
李湘东, 张娇, 袁满. 基于LDA模型的科技期刊主题演化研究[J]. 情报杂志, 2014, 33(7): 115-121.
|
[41] |
(Li Xiangdong, Zhang Jiao, Yuan Man. On Topic Evolution of a Scientific Journal Based on LDA Model[J]. Journal of Intelligence, 2014, 33(7): 115-121.)
|
[42] |
Sung H Y, Yeh H Y, Lin J K, et al. A Visualization Tool of Patent Topic Evolution Using a Growing Cell Structure Neural Network[J]. Scientometrics, 2017, 111(3): 1267-1285.
doi: 10.1007/s11192-017-2361-7
|
[43] |
陈挺, 王海名, 王小梅. 基于可视化的基金资助热点及其演化发现方法研究[J]. 数据分析与知识发现, 2020, 4(2/3): 60-67.
|
[43] |
(Chen Ting, Wang Haiming, Wang Xiaomei. Detecting Funding Topics Evolutions with Visualization[J]. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 60-67.)
|
[44] |
茅利锋. 基于主题模型的主题演化分析及预测[D]. 南京: 南京邮电大学, 2016.
|
[44] |
(Mao Lifeng. Study of Text Evolution Analysis and Prediction Based on Topic Model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016.)
|
[45] |
Wang W, Chen W, Zhu K, et al. Emphasizing the Entrepreneur or the Idea? The Impact of Text Content Emphasis on Investment Decisions in Crowdfunding[J]. Decision Support Systems, 2020, 136: 113341.
doi: 10.1016/j.dss.2020.113341
|
[46] |
林杰, 苗润生. 专业社交媒体中的主题图谱构建方法研究: 以汽车论坛为例[J]. 情报学报, 2020, 39(1): 68-80.
|
[46] |
(Lin Jie, Miao Runsheng. A Method for Constructing Topic Map in Professional Social Media: A Case Study of Automobile Forum[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(1): 68-80.)
|
[47] |
Rogers E M. Diffusion of Innovations[M]. Simon and Schuster, 2010.
|
[48] |
Buskens V. Spreading Information and Developing Trust in Social Networks to Accelerate Diffusion of Innovations[J]. Trends in Food Science & Technology, 2020, 106: 485-488.
|
[49] |
Josefy M, Dean T J, Albert L S, et al. The Role of Community in Crowdfunding Success: Evidence on Cultural Attributes in Funding Campaigns to “Save the Local Theater”[J]. Entrepreneurship Theory and Practice, 2017, 41(2): 161-182.
doi: 10.1111/etap.12263
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|