Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (9): 97-106    DOI: 10.11925/infotech.2096-3467.2021.0146
Current Issue | Archive | Adv Search |
Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing
Fan Tao1,Wang Hao1(),Wu Peng2
1School of Information Management, Nanjing University, Nanjing 210023, China
2School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Download: PDF (1390 KB)   HTML ( 19
Export: BibTeX | EndNote (RIS)      

[Objective] This paper develop news method to improve the negative sentiment analysis of online users. [Objective] We proposed a model based on Graph Convolutional Networks (GCN) and dependency parsing. This model combined the BiLSTM and attention mechanism to extract textual features, which were then used as the vertex features. Third, we utilized the GCN to train the vertex features and the corresponding adjacency matrices. Finally, the model generated four types of emotions (anger, disgust, fear and sadness). [Results] We conducted an empirical study with online public opinion datasets (i.e., “COVID-19”) and compared the performance of our model with the baseline models. We found that the proposed model has certain advantages. For the emotion of “fear”, the recognition accuracy reached 93.535 %. [Limitations] We only examined the proposed model with online public opinion datasets. More research is needed to evaluate its performance with other public datasets. [Conclusions] Combining the dependency parsing information, the GCN, and the attention mechanism could increase the performance of negative sentiment analysis.

Key wordsOnline Public Opinion      Negative Emotions      Graph Convolutional Network      Self-Attention      Dependency Parsing     
Received: 11 February 2021      Published: 15 October 2021
ZTFLH:  分类号: G202  
Fund:*National Natural Science Foundation of China(71774084);Interdisciplinary Project of Nanjing University(010814370113)
Corresponding Authors: Wang Hao     E-mail:

Cite this article:

Fan Tao,Wang Hao,Wu Peng. Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing. Data Analysis and Knowledge Discovery, 2021, 5(9): 97-106.

URL:     OR

The Image of Denpendency Parsing
The Negative Sentiment Analysis Model of Online Users Based on GCN and Dependency Parsing
An Example of the Dependency Parsing Tree and Its Corresponding Adjacent Matrix
情感 数量
非负面 22 536
负面 愤怒 6 839
厌恶 6 645
恐惧 5 008
悲伤 5 584
Results of the Sentiment Annotation
模型 Acc / % Macro _ P / % Macro _ R / % Macro _ F 1 / %
BiLSTM-Attention-GCN 84 . 842 84 . 941 85 . 143 84 . 937
BiLSTM-GCN 82.766 82.879 82.851 82.592
BiLSTM-attention 81.042 80.946 80.951 80.923
BiLSTM 79.610 79.749 79.085 79.219
CNN 77.990 78.416 77.042 77.347
Logistic 73.173 73.041 73.868 72.981
Results of Online Users' Negative Sentiments
Confusion Matices of Different Sentiment Classification Models
The Impact of Hidden Units on the Performance of the Model
The Impact of the Number of GCN Layers on the Performance of the Model
模型 Acc / % Marco _ P / % Marco _ R / % Marco _ F 1 / %
BiLSTM-Attention-GCN 82 . 667 82 . 657 82 . 68 82 . 665
BiLSTM-GCN 82.098 82.089 82.058 82.070
BiLSTM-Attention 81.712 81.723 81.650 81.673
BiLSTM 81.401 81.409 81.340 81.362
CNN 79.835 79.814 79.807 79.810
Logistic 74.225 74.197 74.187 74.192
Results of Two Categories Classification of Online Users' Sentiments
[1] 吴鹏, 强韶华, 高庆宁. 基于SOAR模型的网民群体负面情感建模研究[J]. 中国管理科学, 2018, 26(3):126-138.
[1] ( Wu Peng, Qiang Shaohua, Gao Qingning. Modelling Internet Users' Negative Emotion Based on SOAR Model[J]. Chinese Journal of Management Science, 2018, 26(3):126-138.)
[2] 吴鹏, 应杨, 沈思. 基于双向长短期记忆模型的网民负面情感分类研究[J]. 情报学报, 2018, 37(8):845-853.
[2] ( Wu Peng, Ying Yang, Shen Si. Negative Emotions of Online Users' Analysis Based on Bidirectional Long Short-Term Memory[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(8):845-853.)
[3] 邓君, 孙绍丹, 王阮, 等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践, 2020, 43(8):112-119.
[3] ( Deng Jun, Sun Shaodan, Wang Ruan, et al. Evolution Analysis of Weibo Public Opinion Emotion Based on Word2Vec and SVM[J]. Information Studies: Theory & Application, 2020, 43(8):112-119.)
[4] Hou X C, Huang J, Wang G T, et al. Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification[OL]. arXiv Preprint,arXiv: 1910. 10857.
[5] Zhou J, Huang J X, Hu Q V, et al. SK-GCN: Modeling Syntax and Knowledge via Graph Convolutional Network for Aspect-Level Sentiment Classification[J]. Knowledge-Based Systems, 2020, 205:106292.
doi: 10.1016/j.knosys.2020.106292
[6] Wang R, Xin X, Chang W, et al. Chinese NER with Height-Limited Constituent Parsing [C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 7160-7167.
[7] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5):755-780.
[7] ( Xu Bingbing, Cen Keting, Huang Junjie, et al. A Survey on Graph Convolutional Neural Network[J]. Chinese Journal of Computers, 2020, 43(5):755-780.)
[8] Kipf T N, Welling M. Semi-Supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1609.02907.
[9] Zhao P L, Hou L L, Wu O. Modeling Sentiment Dependencies with Graph Convolutional Networks for Aspect-level Sentiment Classification[J]. Knowledge-Based Systems, 2020, 193:105443.
doi: 10.1016/j.knosys.2019.105443
[10] Lai Y N, Zhang L F, Han D H, et al. Fine-Grained Emotion Classification of Chinese Microblogs Based on Graph Convolution Networks[J]. World Wide Web, 2020, 23(5):2771-2787.
doi: 10.1007/s11280-020-00803-0
[11] Zhang H, Goodfellow I, Metaxas D, et al. Self-Attention Generative Adversarial Networks [C]//Proceedings of the 36th International Conference on Machine Learning. 2019: 7354-7363.
[12] 孙靖超. 基于优化深度双向自编码网络的舆情情感识别研究[J]. 情报杂志, 2020, 39(6):159-163, 195.
[12] ( Sun Jingchao. Sentiment Analysis of Network Public Opinion Based on Optimized Bidirectional Encoder Representations from Transformers[J]. Journal of Intelligence, 2020, 39(6):159-163, 195.)
[13] 范涛, 吴鹏, 曹琪. 基于深度学习的多模态融合网民情感识别研究[J]. 信息资源管理学报, 2020, 10(1):39-48.
[13] ( Fan Tao, Wu Peng, Cao Qi. The Research of Sentiment Recognition of Online Users Based on DNNs Multimodal Fusion[J]. Journal of Information Resources Management, 2020, 10(1):39-48.)
[14] Chen D Q, Manning C. A Fast and Accurate Dependency Parser Using Neural Networks [C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2014: 740-750.
[15] Agarwal B, Poria S, Mittal N, et al. Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach[J]. Cognitive Computation, 2015, 7(4):487-499.
doi: 10.1007/s12559-014-9316-6
[16] Gómez-Rodríguez C, Alonso-Alonso I, Vilares D. How Important is Syntactic Parsing Accuracy? An Empirical Evaluation on Rule-Based Sentiment Analysis[J]. Artificial Intelligence Review, 2019, 52(3):2081-2097.
doi: 10.1007/s10462-017-9584-0
[17] 潘浩, 卫宇杰, 潘尔顺. 基于自动提取句法模板的情感分析[J]. 中文信息学报, 2019, 33(9):129-140.
[17] ( Pan Hao, Wei Yujie, Pan Ershun. Emotion Analysis Based on Automatic Extraction of Syntactic Patterns[J]. Journal of Chinese Information Processing, 2019, 33(9):129-140.)
[18] 王昊, 邓三鸿, 朱立平, 等. 大数据环境下政务数据的情报价值及其利用研究——以海关报关商品归类风险规避为例[J]. 科技情报研究, 2020, 2(4):74-89.
[18] ( Wang Hao, Deng Sanhong, Zhu Liping, et al. A Study of Intelligence Value and Employment of Political Data in Big Data Environment——The Risk Avoidance of Customs Declaration Commodities[J]. Scientific Information Research, 2020, 2(4):74-89.)
[19] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2980-2988.
[20] Wang S Y, Huang M L, Deng Z D. Densely Connected CNN with Multi-scale Feature Attention for Text Classification [C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 4468-4474.
[21] Bastings J, Titov I, Aziz W, et al. Graph Convolutional Encoders for Syntax-aware Neural Machine Translation [C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017: 1957-1967.
[22] Nguyen T H, Grishman R. Graph Convolutional Networks with Argument-Aware Pooling for Event Detection [C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018.
[23] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[24] Gers F A, Schmidhuber J, Cummins F. Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471.
pmid: 11032042
[25] 吴鹏, 刘恒旺, 沈思. 基于深度学习和OCC情感规则的网络舆情情感识别研究[J]. 情报学报, 2017, 36(9):972-980.
[25] ( Wu Peng, Liu Hengwang, Shen Si. Sentiment Analysis of Network Public Opinion Based on Deep Learning and OCC[J]. Journal of the China Society for Scientific and Technical Information, 2017, 36(9):972-980.)
[26] Ekman P. An Argument for Basic Emotions[J]. Cognition and Emotion, 1992, 6(3-4):169-200.
doi: 10.1080/02699939208411068
[27] Tromp E, Pechenizkiy M. Rule-based Emotion Detection on Social Media: Putting Tweets on Plutchik's Wheel[OL]. arXiv Preprint, arXiv: 1412.4682.
[28] Che W X, Li Z H, Liu T. LTP: A Chinese Language Technology Platform [C]//Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. 2010: 13-16.
[29] Xie J, Chen B, Gu X L, et al. Self-Attention-Based BiLSTM Model for Short Text Fine-Grained Sentiment Classification[J]. IEEE Access, 2019, 7:180558-180570.
doi: 10.1109/Access.6287639
[30] Xu G X, Meng Y T, Qiu X Y, et al. Sentiment Analysis of Comment Texts Based on BiLSTM[J]. IEEE Access, 2019, 7:51522-51532.
doi: 10.1109/Access.6287639
[31] Kim Y. Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint, arXiv: 1408.5882.
[32] Prabhat A, Khullar V. Sentiment Classification on Big Data Using Naïve Bayes and Logistic Regression [C]//Proceedings of 2017 International Conference on Computer Communication and Informatics. 2017: 1-5.
[1] Zhou Zeyu,Wang Hao,Zhao Zibo,Li Yueyan,Zhang Xiaoqin. Construction and Application of GCN Model for Text Classification with Associated Information[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[2] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[3] Wang Nan,Li Hairong,Tan Shuru. Predicting of Public Opinion Reversal with Improved SMOTE Algorithm and Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[4] Cheng Tiejun, Wang Man, Huang Baofeng, Feng Lanping. Predicting Online Public Opinion in Emergencies Based on CEEMDAN-BP[J]. 数据分析与知识发现, 2021, 5(11): 59-67.
[5] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[6] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[7] Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133.
[8] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
[9] Lan Qiujun,Liu Wenxing,Li Weikang,Hu Xingye. Sentiment Analysis of Financial Forum Textual Message[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[10] Zhang Fan, Le Xiaoqiu. Research on Recognition of Concept Attribute Instances in Innovation Sentences of Scientific Research Paper[J]. 现代图书情报技术, 2015, 31(5): 15-23.
[11] Nie Hui, Du Jiazhong. Using Dependency Parsing Pattern to Extract Product Feature Tags[J]. 现代图书情报技术, 2014, 30(12): 44-50.
[12] Tang Xiaobo, Xiao Lu. Research of Text Feature Extraction on Dependency Parsing Network[J]. 现代图书情报技术, 2014, 30(11): 31-37.
[13] Lu Bei, Cheng Xiao, Chen Zhi-Qun. Research on the Hot Topics Discovery Algorithm Based on Improved Ant Colony Clustering[J]. 现代图书情报技术, 2010, 26(4): 66-71.
[14] Wang Wei,Xu Xin. Online Public Opinion Hotspot Detection and Analysis Based on Document Clustering[J]. 现代图书情报技术, 2009, 3(3): 74-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938