Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (9): 85-96    DOI: 10.11925/infotech.2096-3467.2021.0237
Current Issue | Archive | Adv Search |
Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives
Shan Xiaohong(),Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan
School of Economics and Management, Beijing University of Technology, Beijing 100124,China
Download: PDF (1482 KB)   HTML ( 25
Export: BibTeX | EndNote (RIS)      

[Objective] This paper explores ways to identify lead users in different fields of the open innovation community, aiming to help enterprises obtain external knowledge resources. [Objective] First, we used the LDA to extract user topics and construct a user knowledge bipartite network. Then, we combined the characteristics of the lead users' knowledge structure and traditional individual attributes. Third, we proposed a link prediction method based on the Exponential Random Graph Model to identify lead users in different fields. Finally, we conducted an empirical study using the Joint Definition Community as an example. [Results] We identified 20 lead users and found their average link probability was greater than 0.900. Compared with traditional link prediction methods, our method had the largest AUC of 0.996 7, and the smallest ARC of 0.013 2. [Limitations] Our model did not include the impacts of time factors on user knowledge. [Conclusions] This research enriches the perspectives and methods of lead user identification and lays a solid foundation for the follow-up studies.

Key wordsOpen Innovation Community      Lead Users      Knowledge-Based View      Link Prediction      Exponential Random Graph Model     
Received: 09 March 2021      Published: 30 June 2021
ZTFLH:  分类号: C939  
Fund:*National Social Science Fund of China(20FGLB004);National Natural Science Foundation of China(71974009)
Corresponding Authors: Shan Xiaohong     E-mail:

Cite this article:

Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives. Data Analysis and Knowledge Discovery, 2021, 5(9): 85-96.

URL:     OR

Lead User Identification Framework of the Open Innovation Community
Perplexity Changes with the Number of Topics
Users-Knowledge Bipartite Network of Joint Definition Community
变量 符号 构局 解释说明
edges 圆圈表示用户,方形表示知识,下同;零模型,基准模型,表示用户有分享知识倾向
知识深度 b1star2 马尔可夫模型,用于拟合用户的知识深度(在少数几个领域拥有较多知识储备)
知识广度 gwb1deg.fixed.2 高阶模型,用于拟合用户的知识广度(拥有多个领域内知识,并且领域具有较高价值,存在其他用户)
用户等级 b1cov.level 黑色圆圈表示用户个体属性,下同;主效应模型,表示等级对用户知识结构的影响
发帖数 主效应模型,表示帖子数量对用户知识结构的影响
智豆数 b1cov.wisdom 主效应模型,表示智豆数对用户知识结构的影响
Variable Description
变量 Model1 Model2 Model3 Model4 Model5
edges -1.084 9 -2.942 9 -3.030 0 -2.530 0 -2.337 0
b1star2 0.169 4 0.162 6 0.134 9 0.124 5
gwb1deg.fixed.2 1.508 0 1.443 0 0.985 0 0.796 6
b1cov.level 0.015 7 -7.9500e-03 -1.5750e-02 2.9670e-04 3.0550e-04
b1cov.wisdom 2.8430e-06
AIC 8 292 7 190 6 185 5 168 5 166
BIC 8 298 7 210 6 211 5 206 5 204
User-Knowledge Bipartite Network Fitting Process Based on ERGM
Model5 Goodness of Fit Test
AUC 0.899 9 0.903 2 0.907 2 0.924 3 0.996 7
ARC 0.323 7 0.323 3 0.321 6 0.314 1 0.013 2
Comparison of Link Prediction Accuracy
领先用户 平均链接概率 用户等级 发帖数 智豆数
幸福如此简单 0.985 9 382 12 420
松下鞋带子 0.983 8 249 7 126
喜禄 0.983 20 967 45 387
想起cherry 0.983 10 615 17 663
冯德旺 0.978 8 258 6 101
俗人一个 0.974 7 120 8 765
岁寒三友33 0.969 13 912 12 795
user_3288803 0.969 9 302 6 191
LRC 0.968 15 1704 3 147
lilililili 0.967 10 248 419
大个子老鼠 0.967 8 212 13 096
森眸暖光TT 0.967 20 369 26 618
醚尼酷 0.966 12 707 10 085
三儿 0.966 9 389 39
徐德亮 0.956 6 64 252
董小宇宙 0.939 8 115 7 114
代号为0 0.938 9 442 4 288
淡然无华 0.936 5 20 470
电信董 0.935 10 276 11 386
Guoqiang 0.922 10 466 22 389
Lead User Details
知识领域 领先用户 知识领域 领先用户
数据中心 喜禄,冯德旺, lilililili,电信董 安装设计 喜禄,冯德旺,醚尼酷
智能配置 松下鞋带子,俗人一个, LRC,代号为0 电源 喜禄
语音报警 想起cherry,冯德旺,俗人一个,徐德亮, Guoqiang 自动设置 森眸暖光TT,三儿,代号为0, Guoqiang
技术系统 幸福如此简单,喜禄,冯德旺,俗人一个, user_3288803,大个子老鼠,醚尼酷, Guoqiang 公交车 俗人一个,大个子老鼠,醚尼酷,徐德亮,代号为0
设备网络 幸福如此简单,想起cherry,冯德旺,俗人一个, lilililili,森眸暖光TT, Guoqiang 显示视图 Guoqiang
显示界面 俗人一个, LRC, Guoqiang Linkhome 三儿,代号为0, Guoqiang
监控告警 喜禄,森眸暖光TT, Guoqiang 数据分析 淡然无华, Guoqiang
路由器 冯德旺,俗人一个, user_3288803,徐德亮,董小宇宙,淡然无华, Guoqiang 基站5g 松下鞋带子,喜禄,冯德旺, user_3288803, lilililili,大个子老鼠,电信董
智慧家庭 俗人一个, LRC,森眸暖光TT, Guoqiang 流量 Guoqiang
停车识别 松下鞋带子,岁寒三友33,大个子老鼠,森眸暖光TT,醚尼酷,徐德亮,代号为0, Guoqiang 道路 幸福如此简单,松下鞋带子,俗人一个,岁寒三友33,醚尼酷,三儿,徐德亮,代号为0
存储 醚尼酷, Guoqiang 设备业务 冯德旺, LRC
能源电力 俗人一个, LRC,董小宇宙,电信董 汽车检测 想起cherry, user_3288803,大个子老鼠,醚尼酷,代号为0, Guoqiang
信息系统 幸福如此简单,想起cherry, user_3288803,森眸暖光TT,醚尼酷 空调 松下鞋带子,喜禄, lilililili,森眸暖光TT,三儿,董小宇宙, Guoqiang
高速 幸福如此简单,喜禄, user_3288803,大个子老鼠,森眸暖光TT,醚尼酷 电池 冯德旺,俗人一个,岁寒三友33,森眸暖光TT,三儿,董小宇宙
车辆驾驶 松下鞋带子,想起cherry,俗人一个,岁寒三友33,森眸暖光TT,醚尼酷,代号为0, Guoqiang 网管机房
Lead User Identification Results in Different Fields
[1] Teece D J. Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance[J]. Strategic Management Journal, 2007, 28(13):1319-1350.
doi: 10.1002/(ISSN)1097-0266
[2] Escribano A, Fosfuri A, Tribó J A. Managing External Knowledge Flows: The Moderating Role of Absorptive Capacity[J]. Research Policy, 2009, 38(1):96-105.
doi: 10.1016/j.respol.2008.10.022
[3] Dahlander L, O'Mahony S, Gann D M. One Foot In, One Foot Out: How does Individuals' External Search Breadth Affect Innovation Outcomes?[J]. Strategic Management Journal, 2016, 37(2):280-302.
doi: 10.1002/smj.2016.37.issue-2
[4] Ren S C, Eisingerich A B, Tsai H T. Search Scope and Innovation Performance of Emerging-Market Firms[J]. Journal of Business Research, 2015, 68(1):102-108.
doi: 10.1016/j.jbusres.2014.04.011
[5] Gölgeci I, Ferraris A, Arslan A, et al. European MNE Subsidiaries' Embeddedness and Innovation Performance: Moderating Role of External Search Depth and Breadth[J]. Journal of Business Research, 2019, 102:97-108.
doi: 10.1016/j.jbusres.2019.05.011
[6] Trantopoulos K, von Krogh G, Wallin M W, et al. External Knowledge and Information Technology: Implications for Process Innovation Performance[J]. MIS Quarterly, 2017, 41(1):287-300.
doi: 10.25300/MISQ
[7] Simao L, Franco M. External Knowledge Sources as Antecedents of Organizational Innovation in Firm Workplaces: A Knowledge-Based Perspective[J]. Journal of Knowledge Management, 2018, 22(2):237-256.
doi: 10.1108/JKM-01-2017-0002
[8] Fichter K. Innovation Communities: The Role of Networks of Promotors in Open Innovation[J]. R&D Management, 2009, 39(4):357-371.
[9] von Hippel E. Lead Users: A Source of Novel Product Concepts[J]. Management Science, 1986, 32(7):791-805.
doi: 10.1287/mnsc.32.7.791
[10] Spann M, Ernst H, Skiera B, et al. Identification of Lead Users for Consumer Products via Virtual Stock Markets[J]. Journal of Product Innovation Management, 2009, 26(3):322-335.
doi: 10.1111/jpim.2009.26.issue-3
[11] Belz F M, Baumbach W. Netnography as a Method of Lead User Identification[J]. Creativity and Innovation Management, 2010, 19(3):304-313.
doi: 10.1111/caim.2010.19.issue-3
[12] Faullant R, Schwarz E J, Krajger I, et al. Towards a Comprehensive Understanding of Lead Userness: The Search for Individual Creativity[J]. Creativity and Innovation Management, 2012, 21(1):76-92.
doi: 10.1111/j.1467-8691.2012.00626.x
[13] Schuhmacher M C, Kuester S. Identification of Lead User Characteristics Driving the Quality of Service Innovation Ideas[J]. Creativity and Innovation Management, 2012, 21(4):427-442.
doi: 10.1111/caim.2012.21.issue-4
[14] Lüthje C, Herstatt C. The Lead User Method: An Outline of Empirical Findings and Issues for Future Research[J]. R&D Management, 2004, 34(5):553-568.
[15] Oosterloo A. Organizations as Professional Communities in the Post-Modern Era[J]. Bulletin of the Transilvania University of Braşov: Series VII: Social Sciences, Law, 2010, 3(1):99-106.
[16] Pajo S, Verhaegen P A, Vandevenne D, et al. Towards Automatic and Accurate Lead User Identification[J]. Procedia Engineering, 2015, 131:509-513.
doi: 10.1016/j.proeng.2015.12.445
[17] Grant R M. Toward a Knowledge-Based Theory of the Firm[J]. Strategic Management Journal, 1996, 17(S2):109-122.
[18] Spender J C. Making Knowledge the Basis of a Dynamic Theory of the firm[J]. Strategic Management Journal, 1996, 17(S2):45-62.
doi: 10.1002/smj.4250171106
[19] Hargadon A B. Brokering Knowledge: Linking Learning and Innovation[J]. Research in Organizational Behavior, 2002, 24:41-85.
doi: 10.1016/S0191-3085(02)24003-4
[20] Hölttä-Otto K, Raviselvam S. Guidelines for Finding Lead User Like Behavior for Latent Need Discovery [C]//Proceedings of NordDesign 2016. 2016:339-348.
[21] Kratzer J, Lettl C, Franke N, et al. The Social Network Position of Lead Users[J]. Journal of Product Innovation Management, 2016, 33(2):201-216.
doi: 10.1111/jpim.2016.33.issue-2
[22] Prpić J, Shukla P P, Kietzmann J H, et al. How to Work a Crowd: Developing Crowd Capital Through Crowdsourcing[J]. Business Horizons, 2015, 58(1):77-85.
doi: 10.1016/j.bushor.2014.09.005
[23] 王莉, 李沁芳, 马云龙. 基于改进网络志方法的开放式创新社区中领先用户识别研究[J]. 科研管理, 2019, 40(10):259-267.
[23] ( Wang Li, Li Qinfang, Ma Yunlong. Identifying Lead Users in Open Innovation Community Based on Extended Netnography[J]. Science Research Management, 2019, 40(10):259-267.)
[24] Pajo S, Verhaegen P A, Vandevenne D, et al. Fast Lead User Identification Framework[J]. Procedia Engineering, 2015, 131:1140-1145.
doi: 10.1016/j.proeng.2015.12.434
[25] Martínez-Torres M R. Application of Evolutionary Computation Techniques for the Identification of Innovators in Open Innovation Communities[J]. Expert Systems with Applications, 2013, 40(7):2503-2510.
doi: 10.1016/j.eswa.2012.10.070
[26] Katila R, Ahuja G. Something Old, Something New: A Longitudinal Study of Search Behavior and New Product Introduction[J]. Academy of Management Journal, 2002, 45(6):1183-1194.
[27] Yayavaram S, Ahuja G. Decomposability in Knowledge Structures and Its Impact on the Usefulness of Inventions and Knowledge-Base Malleability[J]. Administrative Science Quarterly, 2008, 53(2):333-362.
doi: 10.2189/asqu.53.2.333
[28] Zhang J, Baden-Fuller C. The Influence of Technological Knowledge Base and Organizational Structure on Technology Collaboration[J]. Journal of Management Studies, 2010, 47(4):679-704.
doi: 10.1111/j.1467-6486.2009.00885.x
[29] Hau Y S, Kang M. Extending Lead User Theory to Users' Innovation-Related Knowledge Sharing in the Online User Community: The Mediating Roles of Social Capital and Perceived Behavioral Control[J]. International Journal of Information Management, 2016, 36(4):520-530.
doi: 10.1016/j.ijinfomgt.2016.02.008
[30] Scott T A. Analyzing Policy Networks Using Valued Exponential Random Graph Models: Do Government-Sponsored Collaborative Groups Enhance Organizational Networks?[J]. Policy Studies Journal, 2016, 44(2):215-244.
doi: 10.1111/psj.v44.2
[31] Hunter D R, Goodreau S M, Handcock M S. ergm.userterms: A Template Package for Extending Statnet[J]. Journal of Statistical Software, 2013, 52(2):i02.
[32] Zhang C, Zhai B Y, Wu M. Link Prediction of Community in Microblog Based on Exponential Random Graph Model[C]//Proceedings of the 16th International Symposium on Wireless Personal Multimedia Communications (WPMC). 2013.
[33] 刘宏鲲, 吕琳媛, 周涛. 利用链路预测推断网络演化机制[J]. 中国科学: 物理学力学天文学, 2011, 41(7):816-823.
[33] ( Liu Hongkun, Lv Linyuan, Zhou Tao. Uncovering the Network Evolution Mechanism by Link Prediction[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(7):816-823.)
[34] 简兆权, 令狐克睿. 虚拟品牌社区顾客契合对价值共创的影响机制[J]. 管理学报, 2018, 15(3):326-334, 344.
[34] ( Jian Zhaoquan, Linghu Kerui. The Influence Mechanism of Customer Engagement to Value Co-Creation in Virtual Brand Community: A Case Study of Xiaomi Community[J]. Chinese Journal of Management, 2018, 15(3):326-334, 344.)
[35] 余菲菲, 燕蕾. 创新社区中用户创新的创新效应及意见探究:以海尔HOPE创新平台为例[J]. 科学学与科学技术管理, 2017, 38(2):55-67.
[35] ( Yu Feifei, Yan Lei. The Innovation Effect of User Innovation in the Innovation Community and Improvement Strategy: A Study of Haier Open Innovation Platform[J]. Science of Science and Management of S.& T., 2017, 38(2):55-67.)
[36] 张军, 曲丽洋, 许庆瑞. 不同新颖度知识创造与企业成长动态关系研究: 基于华为时间序列数据的探索性案例研究[J]. 科学学研究, 2016, 34(9):1381-1390.
[36] ( Zhang Jun, Qu Liyang, Xu Qingrui. On Dynamic Relationship Between Knowledge Creation and a Firm's Growth Based on Novelty of New Knowledge Differentiation: An Explorative Case Study on Huawei via Sequential Data[J]. Studies in Science of Science, 2016, 34(9):1381-1390.)
[1] Wu Shengnan, Pu Hongjun, Tian Ruonan, Liang Wenqi, Yu Qi. Network Structure’s Impacts on Link Prediction Algorithm from Meta-Analysis Perspective[J]. 数据分析与知识发现, 2021, 5(11): 102-113.
[2] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[3] Wang Song, Yang Yang, Liu Xinmin. Discovering Potentialities of User Ideas from Open Innovation Communities with Graph Attention Network[J]. 数据分析与知识发现, 2021, 5(11): 89-101.
[4] Chen Wenjie. Predicting Research Collaboration Based on Translation Model[J]. 数据分析与知识发现, 2020, 4(10): 28-36.
[5] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[6] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[7] Li He,Zhu Linlin,Yan Min,Liu Jincheng,Hong Chuang. Identifying Useful Information from Open Innovation Community[J]. 数据分析与知识发现, 2018, 2(12): 12-22.
[8] Yu Chuanming,Gong Yutian,Zhao Xiaoli,An Lu. Collaboration Recommendation of Finance Research Based on Multi-feature Fusion[J]. 数据分析与知识发现, 2017, 1(8): 39-47.
[9] Lv Weimin,Wang Xiaomei,Han Tao. Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
[10] Jing Wei,Hengmin Zhu,Ruixiao Song,Shibing Jiang. Link Prediction Analysis of Internet Public Opinion Transfer from the Individual Perspective[J]. 现代图书情报技术, 2016, 32(1): 55-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938