|
|
Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel |
Han Pu1,2( ),Zhang Wei1,Zhang Zhanpeng1,Wang Yuxin1,Fang Haoyu1 |
1School of Management, Nanjing University of Posts & Telecommunications, Nanjing 210003, China 2Jiangsu Provincial Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023, China |
|
|
Abstract [Objective] This paper proposes a multi-channel MCMF-A model for Weibo posts based on feature fusion and attention mechanism, aiming to further explore the semantic information of public health emergency. [Methods] Firstly, we generated word vectors with Word2vec and FastText at the feature vector embedding level, which were merged with the vectors of part-of-speech features and position features. Secondly, we constructed multi-channel layer based on CNN and BiLSTM to extract local and global features of Weibo posts. Thirdly, we utilized the attention mechanism to extract important features of the texts. Finally, we merged the multi-channel output results, and used the softmax function for sentiment classification. [Results] We examined MCMF-A model with 42 384 Weibo posts on COVID-19. The F1 value of the proposed model reached 90.21%, which was 9.71% and 9.14% higher than the benchmark CNN and BiLSTM models. [Limitations] More research is needed to expand the experiment data size to include more small and multi-modal information such as images and voices. [Conclusions] The proposed model could effectively conduct sentiment analysis with Weibo posts.
|
Received: 07 April 2021
Published: 23 December 2021
|
|
Fund:National Social Science Fund of China(17CTQ022);National Innovation Training Program for College Students(SZDG2020040);Jiangsu Graduate Research and Innovation Program Fund Project(KYCX20_0844) |
Corresponding Authors:
Han Pu,ORCID:0000-0001-5867-4292
E-mail: hanpu@njupt.edu.cn
|
[1] |
满媛媛, 刘佳宁. 国内突发事件网络舆情研究进展[J]. 情报科学, 2020, 38(12):170-177.
|
[1] |
(Man Yuanyuan, Liu Jianing. Research Progress of Network Public Opinion on Emergencies in China[J]. Information Science, 2020, 38(12):170-177.)
|
[2] |
罗双玲, 夏昊翔, 王延章. 微博社会网络及传播研究评述[J]. 情报学报, 2015, 34(12):1304-1313.
|
[2] |
(Luo Shuangling, Xia Haoxiang, Wang Yanzhang. Review on Research of Social Networks of Micro-Blogging and Its Propagation Dynamics[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(12):1304-1313.)
|
[3] |
刘忠宝, 秦权, 赵文娟. 微博环境下新冠肺炎疫情事件对网民情绪的影响分析[J]. 情报杂志, 2021, 40(2):138-145.
|
[3] |
(Liu Zhongbao, Qin Quan, Zhao Wenjuan. Research on the Influence of COVID-19 Event on the Netizen Emotion under the Microblog Environment[J]. Journal of Intelligence, 2021, 40(2):138-145.)
|
[4] |
常城扬, 王晓东, 张胜磊. 基于深度学习方法对特定群体推特的动态政治情感极性分析[J]. 数据分析与知识发现, 2021, 5(3):121-131.
|
[4] |
(Chang Chengyang, Wang Xiaodong, Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. Data Analysis and Knowledge Discovery, 2021, 5(3):121-131.)
|
[5] |
Taboada M, Brooke J, Tofiloski M, et al. Lexicon-Based Methods for Sentiment Analysis[J]. Computational Linguistics, 2011, 37(2):267-307.
doi: 10.1162/COLI_a_00049
|
[6] |
Nasukawa T, Yi J. Sentiment Analysis: Capturing Favorability Using Natural Language Processing[C]// Proceedings of the 2nd International Conference on Knowledge Capture. 2003: 70-77.
|
[7] |
Boiy E, Moens M F. A Machine Learning Approach to Sentiment Analysis in Multilingual Web Texts[J]. Information Retrieval, 2009, 12(5):526-558.
doi: 10.1007/s10791-008-9070-z
|
[8] |
Kim S M, Hovy E. Extracting Opinions, Opinion Holders, Topics Expressed in Online News Media Text[C]// Proceedings of the Workshop on Sentiment and Subjectivity in Text. Association for Computational Linguistics, 2006: 1-8.
|
[9] |
夏南强, 肖琴. 微博群体信息及其主观倾向性分析[J]. 情报科学, 2014, 32(9):22-29.
|
[9] |
(Xia Nanqiang, Xiao Qin. Study of MicroBlog Group Information and Its Subjective Tendency Analysis[J]. Information Science, 2014, 32(9):22-29.)
|
[10] |
Rao Y H, Lei J S, Liu W Y, et al. Building Emotional Dictionary for Sentiment Analysis of Online News[J]. World Wide Web, 2014, 17(4):723-742.
doi: 10.1007/s11280-013-0221-9
|
[11] |
陈龙, 管子玉, 何金红, 等. 情感分类研究进展[J]. 计算机研究与发展, 2017, 54(6):1150-1170.
|
[11] |
(Chen Long, Guan Ziyu, He Jinhong, et al. A Survey on Sentiment Classification[J]. Journal of Computer Research and Development, 2017, 54(6):1150-1170.)
|
[12] |
Gautam G, Yadav D. Sentiment Analysis of Twitter Data Using Machine Learning Approaches and Semantic Analysis[C]// Proceedings of the 7th International Conference on Contemporary Computing (IC3). IEEE, 2014: 437-442.
|
[13] |
Sharma A, Dey S. A Boosted SVM Based Ensemble Classifier for Sentiment Analysis of Online Reviews[J]. ACM SIGAPP Applied Computing Review, 2013, 13(4):43-52.
doi: 10.1145/2577554.2577560
|
[14] |
Prabowo R, Thelwall M. Sentiment Analysis: A Combined Approach[J]. Journal of Informetrics, 2009, 3(2):143-157.
doi: 10.1016/j.joi.2009.01.003
|
[15] |
谢丽星, 周明, 孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报, 2012, 26(1):73-83.
|
[15] |
(Xie Lixing, Zhou Ming, Sun Maosong. Hierarchical Structure Based Hybrid Approach to Sentiment Analysis of Chinese Micro Blog and Its Feature Extraction[J]. Journal of Chinese Information Processing, 2012, 26(1):73-83.)
|
[16] |
李然, 林政, 林海伦, 等. 文本情绪分析综述[J]. 计算机研究与发展, 2018, 55(1):30-52.
|
[16] |
(Li Ran, Lin Zheng, Lin Hailun, et al. Text Emotion Analysis: A Survey[J]. Journal of Computer Research and Development, 2018, 55(1):30-52.)
|
[17] |
Liao S Y, Wang J B, Yu R Y, et al. CNN for Situations Understanding Based on Sentiment Analysis of Twitter Data[J]. Procedia Computer Science, 2017, 111:376-381.
doi: 10.1016/j.procs.2017.06.037
|
[18] |
Zeng D J, Dai Y, Li F, et al. Aspect Based Sentiment Analysis by a Linguistically Regularized CNN with Gated Mechanism[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(5):3971-3980.
|
[19] |
Baktha K, Tripathy B K. Investigation of Recurrent Neural Networks in the Field of Sentiment Analysis[C]// Proceedings of 2017 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2017: 2047-2050.
|
[20] |
Nguyen T H, Shirai K. PhraseRNN: Phrase Recursive Neural Network for Aspect-Based Sentiment Analysis[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 2509-2514.
|
[21] |
Zhou C T, Sun C L, Liu Z Y, et al. A C-LSTM Neural Network for Text Classification[OL]. arXiv Preprint, arXiv: 1511.08630.
|
[22] |
Shuang K, Zhang Z X, Guo H, et al. A Sentiment Information Collector-Extractor Architecture Based Neural Network for Sentiment Analysis[J]. Information Sciences, 2018, 467:549-558.
doi: 10.1016/j.ins.2018.08.026
|
[23] |
Cheng Y, Sun H, Chen H M, et al. Sentiment Analysis Using Multi-Head Attention Capsules with Multi-Channel CNN and Bidirectional GRU[J]. IEEE Access, 2021, 9:60383-60395.
doi: 10.1109/ACCESS.2021.3073988
|
[24] |
程艳, 尧磊波, 张光河, 等. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12):2583-2595.
|
[24] |
(Cheng Yan, Yao Leibo, Zhang Guanghe, et al. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12):2583-2595.)
|
[25] |
Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words and Phrases and Their Compositionality[C]// Proceedings of the Neural Information Processing Systems Conference. 2013: 3111-3119.
|
[26] |
Joulin A, Grave E, Bojanowski P, et al. Bag of Tricks for Efficient Text Classification[OL]. arXiv Preprint, arXiv: 1607.01759.
|
[27] |
Pennington J, Socher R, Manning C. GloVe: Global Vectors for Word Representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1532-1543.
|
[28] |
Kim Y. Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint, arXiv: 1408.5882.
|
[29] |
李慧, 柴亚青. 基于卷积神经网络的细粒度情感分析方法[J]. 数据分析与知识发现, 2019, 3(1):95-103.
|
[29] |
(Li Hui, Chai Yaqing. Fine-Grained Sentiment Analysis Based on Convolutional Neural Network[J]. Data Analysis and Knowledge Discovery, 2019, 3(1):95-103.)
|
[30] |
Sun B H, Yang L, Sha H, et al. Multi-modal Sentiment Analysis Using Super Characters Method on Low-Power CNN Accelerator Device[OL]. arXiv Preprint, arXiv: 2001.10179.
|
[31] |
Yin W P, Schütze H. Multichannel Variable-Size Convolution for Sentence Classification[OL]. arXiv Preprint, arXiv: 1603.04513.
|
[32] |
Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
pmid: 9377276
|
[33] |
Limsopatham N, Collier N. Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016:1014-1023.
|
[34] |
Schuster M, Paliwal K K. Bidirectional Recurrent Neural Networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681.
doi: 10.1109/78.650093
|
[35] |
Mnih V, Heess N, Graves A, et al. Recurrent Models of Visual Attention[OL]. arXiv Preprint, arXiv: 1406.6247.
|
[36] |
Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[OL]. arXiv Preprint, arXiv: 1409.0473.
|
[37] |
余本功, 朱梦迪. 基于层级注意力多通道卷积双向GRU的问题分类研究[J]. 数据分析与知识发现, 2020, 4(8):50-62.
|
[37] |
(Yu Bengong, Zhu Mengdi. Question Classification Based on Bidirectional GRU with Hierarchical Attention and Mutil-channel Convolution[J]. Data Analysis and Knowledge Discovery, 2020, 4(8):50-62.)
|
[38] |
陈珂, 梁斌, 柯文德, 等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展, 2018, 55(5):945-957.
|
[38] |
(Chen Ke, Liang Bin, Ke Wende, et al. Chinese Micro-Blog Sentiment Analysis Based on Multi-Channels Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(5):945-957.)
|
[39] |
Miculicich L, Ram D, Pappas N, et al. Document-Level Neural Machine Translation with Hierarchical Attention Networks[OL]. arXiv Preprint, arXiv: 1809.01576.
|
[40] |
宁尚明, 滕飞, 李天瑞. 基于多通道自注意力机制的电子病历实体关系抽取[J]. 计算机学报, 2020, 43(5):916-929.
|
[40] |
(Ning Shangming, Teng Fei, Li Tianrui. Multi-channel Self-attention Mechanism for Relation Extraction in Clinical Records[J]. Chinese Journal of Computers, 2020, 43(5):916-929.)
|
[41] |
Liu R, Wei W, Mao W G, et al. Phase Conductor on Multi-layered Attentions for Machine Comprehension[OL]. arXiv Preprint, arXiv: 1710.10504.
|
[42] |
蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述[J]. 软件学报, 2020, 31(2):302-320.
|
[42] |
(Cai Li, Wang Shuting, Liu Junhui, et al. Survey of Data Annotation[J]. Journal of Software, 2020, 31(2):302-320.)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|