Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (9): 42-53    DOI: 10.11925/infotech.2096-3467.2021.0356
Current Issue | Archive | Adv Search |
Visualizing Knowledge Graph for Explosive Formula Design
Zhou Yang1,Li Xuejun1,Wang Donglei2,Chen Fang3,Peng Lijuan1()
1School of Computer Science and Technology, Southwest University of Science and Technology University, Mianyang 621010, China
2Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
3Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041, China
Download: PDF (3016 KB)   HTML ( 20
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to obtain and use the knowledge of formula design principle, component correlation and preparation technology, aiming to improve the process of explosive design. [Context] Our study organizes the scattered and complex knowledge for explosive formula design and visualizes design process for researchers. [Objective] We took the formulation of polymer bonded explosive as an example and built the knowledge graph of explosive formula with NLP technology. Then, we designed different visual analysis methods for each topic's knowledge graph. [Results] The new knowledge graph presented the related expression of structured and unstructured knowledge for researchers. We examined effectiveness of the proposed method with formulation of polymer bonded explosive, and found it helped researchers obtain the required formula design knowledge effectively. [Conclusions] This study offers practical solutions for researchers to use the knowledge of explosive formula design.

Key wordsKnowledge Graph      Visual Analysis      Formula Design      PBX     
Received: 12 April 2021      Published: 15 October 2021
ZTFLH:  分类号: TP391  
Fund:*National Defense Basic Scientific Research Project(JCKY2017404C004)
Corresponding Authors: Peng Lijuan     E-mail: qiluo@126.com

Cite this article:

Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design. Data Analysis and Knowledge Discovery, 2021, 5(9): 42-53.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2021.0356     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2021/V5/I9/42

Technology Framework of Knowledge Graph of Explosive Formula Design
词条标签 词条内容
PBX能量设计原则 该原则包含:提高爆速;增加爆温;增加氮氧含量;提高装填密度
PBX安全性能设计原则 该原则包含:降低热感度;降低摩擦感度
PBX安定性设计原则 该原则包含:能被硝基化,并生成衍生物;抑制AP低温下热分解
Partial Knowledge Entry Data
Explosive Formula Data
关系名 语义描述 例子
包含 实体2属于实体1的一部分 “配方设计原则”包含“能量设计原则”
类别 实体1的类别是实体2 “TNT”是一种“单质炸药”
同义 指一个实体有多个指称项 “TNT”与“梯恩梯”同义
用作 实体1用作实体2,使用关系 “六硝基芪”用作“柔性导爆索”装药
组分 实体1由实体2组成 “B2169”由“PETN”组成
相关 实体1与实体2相关 “冲击波感度”与“中等压力下粒度”相关
Semantic Relations
知识 描述 关系数量
计算公式 炸药性能、物理、化学性质的计算公式 54
分子结构 分子式 908
炸药配方知识 基础知识 炸药的名称以及炸药的功能特性描述 1 030
属性知识 炸药配方的物理、化学、爆轰等性质 6 321
配比知识 炸药组分配比 254
炸药设计知识 设计原则、组分关联、制备工艺等知识 2 056
组分相关知识 组分相互作用对炸药性能的影响 157
Knowledge Graph of Explosive Formula Design
Thematic Knowledge Framework
Knowledge Hierarchy Graph
Node-Link Graph
Node-Link Graph
Design Principles Graph
Design Principles Graph
Component Design Graph
Component Design Graph
Preparation Technology Graph
Preparation Technology Graph
Screening of Formula Containing Al
Screening of Formula Containing Al
[1] 彭莉娟, 杨春明, 王冬磊, 等. 含能材料数据库研究现状及发展趋势[C]// OSEC首届兵器工程大会论文集. 2017.
[1] ( Peng Lijuan, Yang Chunming, Wang Donglei, et al. Progress and Prospect of Energetic Materials Database[C]// Proceedings of the 1st Weapon Engineering Conference. 2017.)
[2] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606.
[2] ( Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606.)
[3] Sun K, Liu Y H, Guo Z C, et al. EduVis: Visualization for Education Knowledge Graph Based on Web Data[C]// Proceedings of the 9th International Symposium on Visual Information Communication and Interaction. 2016: 138-139.
[4] Dou J H, Qin J Y, Jin Z X, et al. Knowledge Graph Based on Domain Ontology and Natural Language Processing Technology for Chinese Intangible Cultural Heritage[J]. Journal of Visual Languages & Computing, 2018, 48:19-28.
[5] 张晔, 贾雨葶, 傅洛伊, 等. AceMap学术地图与AceKG学术知识图谱——学术数据可视化[J]. 上海交通大学学报, 2018, 52(10):1357-1362.
[5] ( Zhang Ye, Jia Yuting, Fu Luoyi, et al. AceMap Academic Map and AceKG Academic Knowledge Graph for Academic Data Visualization[J]. Journal of Shanghai Jiaotong University, 2018, 52(10):1357-1362.)
[6] 颜子明, 杜德斌, 刘承良, 等. 西方创新地理研究的知识图谱可视化分析[J]. 地理学报, 2018, 73(2):362-379.
doi: 10.11821/dlxb201802011
[6] ( Yan Ziming, Du Debin, Liu Chengliang, et al. Visualization Analysis of Mapping Knowledge Domain on Western Geography of Innovation[J]. Acta Geographica Sinica, 2018, 73(2):362-379.)
doi: 10.11821/dlxb201802011
[7] 杨海慈, 王军. 宋代学术师承知识图谱的构建与可视化[J]. 数据分析与知识发现, 2019, 3(6):109-116.
[7] ( Yang Haici, Wang Jun. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. Data Analysis and Knowledge Discovery, 2019, 3(6):109-116.)
[8] Xu L Y, Fernando Z T, Zhou X, et al. LogCanvas: Visualizing Search History Using Knowledge Graphs [C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 1289-1292.
[9] Ge T, Wang Y F, de Melo G, et al. Visualizing and Curating Knowledge Graphs over Time and Space [C]//Proceedings of ACL-2016 System Demonstrations. 2016: 25-30.
[10] Li Y, Zhao J J, Yang L P, et al. Construction, Visualization and Application of Knowledge Graph of Computer Science Major [C]//Proceedings of the 2019 International Conference on Big Data and Education. 2019: 43-47.
[11] Xu D W, Wang L, Wang X, et al. KG3D: An Interactive 3D Visualization Tool for Knowledge Graphs [C]//Proceedings of International Conference on Advanced Data Mining and Applications. Springer, Cham, 2019: 886-889.
[12] He X, Zhang R, Rizvi R F, et al. ALOHA: Developing an Interactive Graph-Based Visualization for Dietary Supplement Knowledge Graph Through User-centered Design[J]. BMC Medical Informatics and Decision Making, 2019, 19(4):1-18.
doi: 10.1186/s12911-018-0723-6
[13] Szekely P, Knoblock C A, Slepicka J, et al. Building and Using a Knowledge Graph to Combat Human Trafficking [C]//Proceedings of International Semantic Web Conference. Springer, Cham, 2015: 205-221.
[14] Liu H, Li Y F, Hong R, et al. Knowledge Graph Analysis and Visualization of Research Trends on Driver Behavior[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(1):495-511.
[15] Yu T, Li J H, Yu Q, et al. Knowledge Graph for TCM Health Preservation: Design, Construction, and Applications[J]. Artificial Intelligence in Medicine, 2017, 77:48-52.
doi: 10.1016/j.artmed.2017.04.001
[16] Henry N, Fekete J D, McGuffin M J. NodeTrix: A Hybrid Visualization of Social Networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6):1302-1309.
doi: 10.1109/TVCG.2007.70582
[17] Bach B, Pietriga E, Liccardi I, et al. OntoTrix: A Hybrid Visualization for Populated Ontologies [C]//Proceedings of the 20th International Conference Companion on World Wide Web. 2011: 177-180.
[18] Lin C C, Deng D J, Jhong S Y. A Triangular NodeTrix Visualization Interface for Overlapping Social Community Structures of Cyber-physical-social Systems in Smart Factories[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(1):58-68.
doi: 10.1109/TETC.6245516
[19] Angori L, Didimo W, Montecchiani F, et al. ChordLink: A New Hybrid Visualization Model [C]//Proceedings of International Symposium on Graph Drawing and Network Visualization. Springer, Cham, 2019: 276-290.
[20] Lafferty J, McCallum A, Pereira F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data [C]//Proceedings of the 18th International Conference on Machine Learning. 2001: 282-289.
[21] Zeng D J, Liu K, Lai S W, et al. Relation Classification via Convolutional Deep Neural Network [C]//Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. 2014: 2335-2344.
[1] Shen Kejie, Huang Huanting, Hua Bolin. Constructing Knowledge Graph with Public Resumes[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[2] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[3] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[4] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[5] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[6] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[7] Lv Huakui,Hong Liang,Ma Feicheng. Constructing Knowledge Graph for Financial Equities[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[8] Sun Xinrui,Meng Yu,Wang Wenle. Identifying Traffic Events from Weibo with Knowledge Graph and Target Detection[J]. 数据分析与知识发现, 2020, 4(12): 136-147.
[9] Zhu Chaoyu, Liu Lei. A Review of Medical Decision Supports Based on Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(12): 26-32.
[10] Hu Zhengyin,Liu Leilei,Dai Bing,Qin Xiaochu. Discovering Subject Knowledge in Life and Medical Sciences with Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(11): 1-14.
[11] Wang Yi,Shen Zhe,Yao Yifan,Cheng Ying. Domain-Specific Event Graph Construction Methods:A Review[J]. 数据分析与知识发现, 2020, 4(10): 1-13.
[12] Li Jiaquan,Li Baoan,You Xindong,Lü Xueqiang. Computing Similarity of Patent Terms Based on Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(10): 104-112.
[13] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[14] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[15] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn