|
|
Review of Application and Evolution of Meta-Analysis in Social Sciences |
Li Xiao1,2,Qu Jiansheng2,3( ) |
1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041, China |
|
|
Abstract [Objective] This paper reviews the latest application and evolution of meta-analysis in social sciences. [Methods] First, we summarized the main characteristics of meta-analysis as well as the key problems facing the application of meta-analysis in social sciences. Then, we conducted case studies with the MetaBUS and CoDa databases. Finally, we exmined the meta-analysis from different perspectives. [Results] The meta-analysis in social sciences mainly studied the aggregated data meta with traditional methods, such as standardized mean differences and correlation coefficients. At present, the key issues are effect size deviation, lack of transparency and quality assessment, as well as time and manpower consuming, etc. Meta-analytics database and meta-analytic research can benefit each other. Data repository, open science movement and artificial intelligence technology all posed various significant impacts on meta-analytical research. [Limitations] The content analysis is mainly based on sampling samples, so there are potential limitations in comprehensively revealing the characteristics and problems of meta-analysis. [Conclusions] There are still many problems to be addressed for meta-analysis in social sciences, and all parties need to work together to improve these research and draw better conclusions.
|
Received: 24 May 2021
Published: 23 December 2021
|
|
Fund:National Key Research and Development Project of China(2018YFC1509007) |
Corresponding Authors:
Qu Jiansheng,ORCID:0000-0002-2806-3447
E-mail: jsqu@lzb.ac.cn
|
[1] |
Glass G V. Primary, Secondary, and Meta-Analysis of Research[J]. Educational Researcher, 1976, 5(10):3-8.
|
[2] |
Higgins J P T, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions[M]. The 2nd Edition. Chichester, UK: John Wiley & Sons, 2019.
|
[3] |
Koricheva J, Gurevitch J, Mengersen K. Handbook of Meta-Analysis in Ecology and Evolution[M]. Princeton, New Jersey: Princeton University Press, 2013.
|
[4] |
Coope H. Research Synjournal and Meta-Analysis a Step-by-Step Approach[J]. Journal of Chemical Information and Modeling, 2016, 53(9):1689-1699.
doi: 10.1021/ci400128m
|
[5] |
Cooper H, Hedges L V, Valentine J C. The Handbook of Research Synbook and Meta-Analysis[M]. New York: Russell Sage Foundation, 2019.
|
[6] |
Lipsey M W, Wilson D B. Practical Meta-Analysis[M]. London: Sage Publications, 2001.
|
[7] |
Borenstein M, Hedges L V, Higgins J P T, et al. Introduction to Meta-Analysis[M]. Chichester, UK: John Wiley & Sons, 2009.
|
[8] |
Hedges L V, Olkin I. Statistical Methods for Meta-Analysis[M]. Academic Press, 1985.
|
[9] |
Hunter J E, Schmidt F L. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings[M]. SAGE Publications, Inc, 1990.
|
[10] |
Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement[J]. PLoS Medicine, 2009, 6(7):e1000097.
doi: 10.1371/journal.pmed.1000097
|
[11] |
APA Publications and Communications Board Working Group on Journal Article Reporting Standards. Reporting Standards for Research in Psychology: Why do We Need Them? What Might They Be?[J]. The American Psychologist, 2008, 63(9):839-851.
doi: 10.1037/0003-066X.63.9.839
|
[12] |
The Methods Group of the Campbell Collaboration. Methodological Expectations of Campbell Collaboration Intervention Reviews: Conduct Standards[S]. The Campbell Collaboration, 2016.
|
[13] |
Sterne J A, Egger M, Moher D. Addressing Reporting Biases[A]//Cochrane Handbook for Systematic Reviews of Interventions[M]. Chichester, UK: John Wiley & Sons, 2008: 297-333.
|
[14] |
Kalter J, Verdonck-de Leeuw I M, Sweegers M G, et al. Effects and Moderators of Psychosocial Interventions on Quality of Life, and Emotional and Social Function in Patients with Cancer: An Individual Patient Data Meta-Analysis of 22 RCTS[J]. Psycho-Oncology, 2018, 27(4):1150-1161.
doi: 10.1002/pon.4648
pmid: 29361206
|
[15] |
van Wijk R, Jansen J J P, Lyles M A. Inter- and Intra-Organizational Knowledge Transfer: A Meta-Analytic Review and Assessment of Its Antecedents and Consequences[J]. Journal of Management Studies, 2008, 45(4):830-853.
doi: 10.1111/j.1467-6486.2008.00771.x
|
[16] |
Cohen J. Statistical Power Analysis for the Behavioral Sciences[M]. The 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates Publishers, 1988.
|
[17] |
Hedges L V. Unbiased Estimation of Effect Size[J]. Evaluation in Education, 1980, 4:25-27.
doi: 10.1016/0191-765X(80)90005-1
|
[18] |
Bergh D D, Aguinis H, Heavey C, et al. Using Meta-Analytic Structural Equation Modeling to Advance Strategic Management Research: Guidelines and an Empirical Illustration via the Strategic Leadership-Performance Relationship[J]. Strategic Management Journal, 2016, 37(3):477-497.
doi: 10.1002/smj.2016.37.issue-3
|
[19] |
Simmons J P, Nelson L D, Simonsohn U. False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant[J]. Psychological Science, 2011, 22(11):1359-1366.
doi: 10.1177/0956797611417632
pmid: 22006061
|
[20] |
Motulsky H J. Common Misconceptions about Data Analysis and Statistics[J]. The Journal of Pharmacology and Experimental Therapeutics, 2014, 351(1):200-205.
doi: 10.1124/jpet.114.219170
|
[21] |
Polanin J R, Tanner-Smith E E, Hennessy E A. Estimati. the Difference Between Published and Unpublished Effect Sizes[J]. Review of Educational Research, 2016, 86(1):207-236.
doi: 10.3102/0034654315582067
|
[22] |
Gage N A, Cook B G, Reichow B. Publication Bias in Special Education Meta-Analyses[J]. Exceptional Children, 2017, 83(4):428-445.
doi: 10.1177/0014402917691016
|
[23] |
Friese M, Frankenbach J. p-Hacking and Publication Bias Interact to Distort Meta-Analytic Effect Size Estimates[J]. Psychological Methods, 2020, 25(4):456-471.
doi: 10.1037/met0000246
pmid: 31789538
|
[24] |
Egger M, Smith G D, Schneider M, et al. Bias in Meta-Analysis Detected by a Simple, Graphical Test[J]. BMJ, 1997, 315(7109):629-634.
pmid: 9310563
|
[25] |
Orwin R G. A Fail-Safe N for Effect Size in Meta-Analysis[J]. Journal of Educational Statistics, 1983, 8(2):157.
|
[26] |
Duval S, Tweedie R. Trim and Fill: A Simple Funnel-Plot-Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis[J]. Biometrics, 2000, 56(2):455-463.
pmid: 10877304
|
[27] |
Simonsohn U, Nelson L D, Simmons J P. p-Curve and Effect Size[J]. Perspectives on Psychological Science, 2014, 9(6):666-681.
doi: 10.1177/1745691614553988
pmid: 26186117
|
[28] |
van Assen M A, van Aert R C, Wicherts J M. Meta-Analysis Using Effect Size Distributions of Only Statistically Significant Studies[J]. Psychological Methods, 2015, 20(3):293-309.
doi: 10.1037/met0000025
|
[29] |
Hedges L V. Estimation of Effect Size under Nonrandom Sampling: The Effects of Censoring Studies Yielding Statistically Insignificant Mean Differences[J]. Journal of Educational Statistics, 1984, 9(1):61-85.
doi: 10.3102/10769986009001061
|
[30] |
Carter E C, Schönbrodt F D, Gervais W M, et al. Correcting for Bias in Psychology: A Comparison of Meta-Analytic Methods[J]. Advances in Methods and Practices in Psychological Science, 2019, 2(2):115-144.
doi: 10.1177/2515245919847196
|
[31] |
McShane B B, Böckenholt U, Hansen K T. Adjusting for Publication Bias in Meta-Analysis[J]. Perspectives on Psychological Science, 2016, 11(5):730-749.
doi: 10.1177/1745691616662243
|
[32] |
Becker B J. Multivariate Meta-Analysis[A]//Handbook of Applied Multivariate Statistics and Mathematical Modeling[M]. Amsterdam: Elsevier, 2000: 499-525.
|
[33] |
Hedges L V. Stochastically Dependent Effect Sizes[A]//The Handbook of Research Synbook and Meta-Analysis[M]. New York: Russell Sage Foundation, 2019: 281-298.
|
[34] |
Mengersen K, Jennions M D, Schmid C H. Statistical Models for the Meta-Analysis of Nonindependent Data[A]//Handbook of Meta-Analysis in Ecology and Evolution[M]. Princeton, New Jersey: Princeton University Press, 2013: 255-283.
|
[35] |
Lajeunesse M J. Meta-Analysis and the Comparative Phylogenetic Method[J]. The American Naturalist, 2009, 174(3):369-381.
doi: 10.1086/603628
pmid: 19637963
|
[36] |
Noble D W A, Lagisz M, O’Dea R E, et al. Nonindependence and Sensitivity Analyses in Ecological and Evolutionary Meta-Analyses[J]. Molecular Ecology, 2017, 26(9):2410-2425.
doi: 10.1111/mec.2017.26.issue-9
|
[37] |
Rodgers M A, Pustejovsky J E. Evaluating Meta-Analytic Methods to Detect Selective Reporting in the Presence of Dependent Effect Sizes[J]. Psychological Methods, 2021, 26(2):141-160.
doi: 10.1037/met0000300
|
[38] |
Kalaian H A, Raudenbush S W. A Multivariate Mixed Linear Model for Meta-Analysis[J]. Psychological Methods, 1996, 1(3):227-235.
doi: 10.1037/1082-989X.1.3.227
|
[39] |
van den Noortgate W, López-López J A, Marín-Martínez F, et al. Three-Level Meta-Analysis of Dependent Effect Sizes[J]. Behavior Research Methods, 2013, 45(2):576-594.
doi: 10.3758/s13428-012-0261-6
pmid: 23055166
|
[40] |
Hedges L V, Tipton E, Johnson M C. Robust Variance Estimation in Meta-Regression with Dependent Effect Size Estimates[J]. Research Synjournal Methods, 2010, 1(1):39-65.
|
[41] |
Banks G C, Field J G, Oswald F L, et al. Answers to 18 Questions About Open Science Practices[J]. Journal of Business and Psychology, 2019, 34(3):257-270.
doi: 10.1007/s10869-018-9547-8
|
[42] |
O’Boyle E H, Banks G C, Gonzalez-Mulé E. The Chrysalis Effect: How Ugly Initial Results Metamorphosize into Beautiful Articles[J]. Journal of Management, 2017, 43(2):376-399.
doi: 10.1177/0149206314527133
|
[43] |
Schwab A, Starbuck W H. A Call for Openness in Research Reporting: How to Turn Covert Practices into Helpful Tools[J]. Academy of Management Learning & Education, 2017, 16(1):125-141.
|
[44] |
Christensen G, Miguel E. Transparency, Reproducibility, and the Credibility of Economics Research[J]. Journal of Economic Literature, 2018, 56(3):920-980.
doi: 10.1257/jel.20171350
|
[45] |
Polanin J R, Hennessy E A, Tsuji S. Transparency and Reproducibility of Meta-Analyses in Psychology: A Meta-Review[J]. Perspectives on Psychological Science, 2020, 15(4):1026-1041.
doi: 10.1177/1745691620906416
pmid: 32516081
|
[46] |
Moreau D, Gamble B. Conducting a Meta-Analysis in the Age of Open Science: Tools, Tips, and Practical Recommendations[J]. Psychological Methods, 2020. DOI: 10.1037/met0000351.
doi: 10.1037/met0000351
|
[47] |
van de Schoot R, de Bruin J, Schram R, et al. An Open Source Machine Learning Framework for Efficient and Transparent Systematic Reviews[J]. Nature Machine Intelligence, 2021, 3(2):125-133.
doi: 10.1038/s42256-020-00287-7
|
[48] |
Harrison H, Griffin S J, Kuhn I, et al. Software Tools to Support Title and Abstract Screening for Systematic Reviews in Healthcare: An Evaluation[J]. BMC Medical Research Methodology, 2020, 20(1):7.
doi: 10.1186/s12874-020-0897-3
pmid: 31931747
|
[49] |
Coyne J C, Hagedoorn M, Thombs B. Most Published and Unpublished Dissertations Should be Excluded from Meta-Analyses: Comment on Moyer et al[J]. Psycho-Oncology, 2011, 20(2):224-225.
doi: 10.1002/pon.1788
|
[50] |
Ioannidis J P A. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-Analyses[J]. The Milbank Quarterly, 2016, 94(3):485-514.
|
[51] |
Sutton A J, Abrams K R, Jones D R, et al. Methods for Meta-Analysis in Medical Research[M]. Chichester: Wiley, 2000.
|
[52] |
Roberts P D, Stewart G B, Pullin A S. Are Review Articles a Reliable Source of Evidence to Support Conservation and Environmental Management? A Comparison with Medicine[J]. Biological Conservation, 2006, 132(4):409-423.
doi: 10.1016/j.biocon.2006.04.034
|
[53] |
Higgins J P T, Lane P W, Anagnostelis B, et al. A Tool to Assess the Quality of a Meta-Analysis[J]. Research Synjournal Methods, 2013, 4(4):351-366.
|
[54] |
Philibert A, Loyce C, Makowski D. Assessment of the Quality of Meta-Analysis in Agronomy[J]. Agriculture, Ecosystems & Environment, 2012, 148:72-82.
doi: 10.1016/j.agee.2011.12.003
|
[55] |
Bosco F A, Uggerslev K L, Steel P. MetaBUS as a Vehicle for Facilitating Meta-Analysis[J]. Human Resource Management Review, 2017, 27(1):237-254.
doi: 10.1016/j.hrmr.2016.09.013
|
[56] |
Bosco F A, Uggerslev K L. MetaBUS[EB/OL]. [2021-05-10]. http://metabus.org/.
|
[57] |
Bosco F A, Aguinis H, Singh K, et al. Correlational Effect Size Benchmarks[J]. Journal of Applied Psychology, 2015, 100(2):431-449.
doi: 10.1037/a0038047
|
[58] |
Singh K, Bosco F, Field J G. Mapping I-O Psychology: Content and Trends from 1980 to 2009[C]// Proceedings of Society for Industrial and Organizational Psychology Conference. 2014.
|
[59] |
Chamberlin M, Newton D W, Lepine J A. A Meta-Analysis of Voice and Its Promotive and Prohibitive Forms: Identification of Key Associations, Distinctions, and Future Research Directions[J]. Personnel Psychology, 2017, 70(1):11-71.
doi: 10.1111/peps.2017.70.issue-1
|
[60] |
Rudolph C W, Kooij D T A M, Rauvola R S, et al. Occupational Future Time Perspective: A Meta-Analysis of Antecedents and Outcomes[J]. Journal of Organizational Behavior, 2018, 39(2):229-248.
doi: 10.1002/job.2264
|
[61] |
Schmidt J A, Pohler D M. Making Stronger Causal Inferences: Accounting for Selection Bias in Associations Between High Performance Work Systems, Leadership, and Employee and Customer Satisfaction[J]. The Journal of Applied Psychology, 2018, 103(9):1001-1018.
doi: 10.1037/apl0000315
|
[62] |
Spadaro G, Tiddi I, Columbus S, et al. The Cooperation Databank[EB/OL]. [2021-05-10]. https://app.cooperationdatabank.org/.
|
[63] |
Spadaro G, Tiddi I, Columbus S, et al. The Cooperation Databank[OL]. https://doi.org/10.31234/osf.io/rveh3.
|
[64] |
Wilkinson M D, Dumontier M, Aalbersberg I J, et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship[J]. Scientific Data, 2016, 3:160018.
doi: 10.1038/sdata.2016.18
pmid: 26978244
|
[65] |
Centre for Open Science. The Centre for Open Science 2018[EB/OL]. [2021-05-10]. https://www.cos.io/.
|
[66] |
Kraker P, Leony D, Reinhardt W, et al. The Case for an Open Science in Technology Enhanced Learning[J]. International Journal of Technology Enhanced Learning, 2011, 3(6):643-654.
doi: 10.1504/IJTEL.2011.045454
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|