Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (1): 55-68    DOI: 10.11925/infotech.2096-3467.2021.0631
Current Issue | Archive | Adv Search |
Measuring Online Trust in Government Microblogs in Public Health Emergencies
An Lu1(),Xu Manting2
1Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
2School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF (1101 KB)   HTML ( 33
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to measure the netizens' trust in government microblogs during public health emergencies, and then explores reasons for the changes. [Methods] First, we calculated the trust from the comments on government microblogs with the comment objects, the topic similarity between comments and microblogs, as well as their sentiments. Then, we added the numbers of likes and forwards/retweets to decide the comprehensive trust of the netizens toward the government microblogs. [Results] We examined out model with microblog data on COVID-19 and found that topics related to industrial and government efforts fighting the pandemic enhanced the trust in government microblogs. There were great differences in the development trends and reasons of the trust in government microblogs from different fields. [Limitations] We only used the events and the microbloggers as the objects of comments. [Conclusions] The proposed model could help government agencies improve decision making, public trust, and lead online opinion during public health emergencies.

Key wordsGovernment Microblogging      Social Media      Public Trust      Trust Calculation      Public Emergencies      COVID-19     
Received: 24 June 2021      Published: 22 February 2022
ZTFLH:  D63  
Fund:National Natural Science Foundation of China(72174153);National Natural Science Foundation of China(71790612);National Natural Science Foundation of China(71921002)
Corresponding Authors: An Lu,ORCID:0000-0002-5408-7135     E-mail: anlu97@163.com

Cite this article:

An Lu, Xu Manting. Measuring Online Trust in Government Microblogs in Public Health Emergencies. Data Analysis and Knowledge Discovery, 2022, 6(1): 55-68.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2021.0631     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2022/V6/I1/55

规则编号 微博内容情感 评论情感 主题是否相似 是否信任 举例
1 —— 正(对博主) —— 偏向于信任 “神仙博主!表白幕后工作者!”
2 —— 负(对博主) —— 偏向于不信任 “你有什么资格叫女性之声”
3 正(对事件) —— 偏向于信任 “辛苦啦一线的医护人员”
4 负(对事件) 相似 偏向于不信任 “10万口罩都不知道去哪了,根本预约不上,骗人!”
5 不相似 偏向于不信任(其他诉求未得到解决) “反对外国人永居条例!”
6 正(对事件) 相似 偏向于不信任 “他不是造谣者,他是公民心中的英雄”
7 不相似 偏向于信任 “新的一年要加油呀”
8 负(对事件) 相似 偏向于信任 “我真是无语了 那些乱跑的人压根没有心”
9 不相似 偏向于不信任(其他诉求未得到解决) “红十字会什么时候查处?物资什么时候给一线医院送过去?”
10 中立 正/负(对事件) 相似 偏向于中立(对事件的讨论) “江苏的情况也很严峻了。”
11 不相似 取决于评论情感 (同规则7、规则5)
12 —— 中立(对事件/对博主) —— 偏向于中立 “美白美黑只是个人审美叭”
The Rules of Trust for Each Comment
Research Framework
Baidu Search Index of Key Words
微博账号 认证信息 所在榜单 影响力
中国警方在线 公安部新闻中心,公安部治安管理局官方微博 全国十大公安微博 91.34
共青团中央 共青团中央官方微博 全国十大团委微博 91.01
中国长安网 中央政法委新闻网站官方微博 全国十大政法委微博 90.85
中国消防 应急管理部消防救援局官方微博 全国十大应急系统微博 90.77
成都发布 成都市人民政府新闻办公室 全国十大党政新闻发布微博 88.15
List of High-Influence Government Microblog Accounts (Top 5)
辟谣信息原始来源账号 时间 辟谣话题 关键词
科普中国 2020/1/21 喝板蓝根和熏醋可以预防武汉肺炎?辟谣:不可以 板蓝根,熏醋,预防
侠客岛 2020/1/31 世卫组织宣布中国为“疫区国”?谣言! 中国,疫区国
中国新闻网 2020/2/29 新型冠状病毒在家也能自测?假的 新型冠状病毒,自测
天津辟谣 2020/3/29 谣言:感染新冠需终身服药。鉴定结果:谣言 终身服药
中国互联网联合辟谣平台 2020/4/29 病毒来自武汉生物实验室?澄清:迄今为止所有证据证明新冠病毒并非人造 病毒,武汉,实验室
Topics and Key Words of Rumor Refutation (Part)
样本 评价对象为博主 评价对象为事件
训练集(原始) 95条 1 566条
训练集(RandomOverSampler) 1 566条 1 566条
测试集 30条 386条
Distribution of Sample Data
实验序号 计算规则 准确率
倾向于信任 倾向于不信任 倾向于中立
1 主题相似度+评论情感 69.7% 71.2% 94.5%
2 微博正文情感+评论情感 77.5% 78.0% 94.6%
3 微博正文情感+评论情感+主题相似度+评论对象 81.2% 82.2% 95.3%
Accuracy of Rules
Average Monthly Trust of 43 Government Microblogs
Average Monthly Trust of Five Government Microblogs
[1] 国务院. 突发公共卫生事件应急条例(2011年1月8日修正版)[J]. 中华卫生应急电子杂志, 2016, 2(1):64-68.
[1] (State Council of the PRC. Emergency Regulations for Public Health Emergencies (Revised on January 8, 2011)[J]. Chinese Journal of Hygiene Rescue (Electronic Edition), 2016, 2(1):64-68.)
[2] 习近平在中央政治局常委会会议研究应对新型冠状病毒肺炎疫情工作时的讲话[EB/OL]. [2020-02-15]. http://cpc.people.com.cn/n1/2020/0215/c64094-31588554.html .
[2] (Xi Jinping's Speech at the Standing Committee Meeting of the Political Bureau of the CPC Central Committee on the Work of Dealing with COVID-19 [EB/OL]. [2020-02-15]. http://cpc.people.com.cn/n1/2020/0215/c64094-31588554.html .
[3] 方兴东, 谷潇, 徐忠良. “信疫”(Infodemic)的根源,规律及治理对策——新技术背景下国际信息传播秩序的失控与重建[J]. 新闻与写作, 2020(6):35-44.
[3] ( Fang Xingdong, Gu Xiao, Xu Zhongliang. The Roots, Laws and Countermeasures of “Infodemic”——The Out of Control and Reconstruction of International Information Communication Order under the Background of New Technology[J]. News and Writing, 2020(6):35-44.)
[4] 徐顽强. 新形势下亟需重塑现代化社会信任体系[J]. 国家治理, 2020(5):25-28.
[4] ( Xu Wanqiang. Rebuilding the Trust System of Modern Society in New Situation[J]. Governance, 2020(5):25-28.)
[5] 杨妍. 自媒体时代政府如何应对微博传播中的“塔西佗陷阱”[J]. 中国行政管理, 2012(5):26-29.
[5] ( Yang Yan. How Governments Can Cope with the “Tacitus Trap” of Weibo Communication in the We-Media Era[J]. Chinese Public Administration, 2012(5):26-29.)
[6] Simmel G. Philosophie des Geldes[M]. Routledge & Kegan Paul, 1978.
[7] Shapiro D L, Sheppard B H, Cheraskin L. Business on a Handshake[J]. Negotiation Journal, 1992, 8(4):365-377.
doi: 10.1111/nejo.1992.8.issue-4
[8] Miller K W, Voas J, Laplante P. In Trust We Trust[J]. Computer, 2010, 43(10):85-87.
[9] Zucker L G. Production of Trust: Institutional Sources of Economic Structure[J]. Research in Organizational Behavior, 1986, 8:53-111.
[10] Jin X L, Yin M, Zhou Z, et al. The Differential Effects of Trusting Beliefs on Social Media Users' Willingness to Adopt and Share Health Knowledge[J]. Information Processing & Management, 2021, 58(1):102413.
doi: 10.1016/j.ipm.2020.102413
[11] Sherchan W, Nepal S, Paris C. A Survey of Trust in Social Networks[J]. ACM Computing Surveys, 2013, 45(4):1-33.
[12] 刘赋. 应急科普网络舆论引导机制研究[J]. 中国应急管理, 2020(11):36-37.
[12] ( Liu Fu. Research on Online Public Opinion Guidance Mechanism of Emergency Science Popularization[J]. China Emergency Management, 2020(11):36-37.)
[13] Caverlee J, Liu L, Webb S. The SocialTrust Framework for Trusted Social Information Management: Architecture and Algorithms[J]. Information Sciences, 2010, 180(1):95-112.
doi: 10.1016/j.ins.2009.06.027
[14] Park M J, Choi H, Kim S K, et al. Trust in Government's Social Media Service and Citizen's Patronage Behavior[J]. Telematics & Informatics, 2015, 32(4):629-641.
[15] 王菁, 舒妍菱. 政府微博的公众信任度研究[J]. 复旦公共行政评论, 2017(1):104-128.
[15] ( Wang Jing, Shu Yanling. Research on Public Trust of Government Micro Blog[J]. Fudan Public Administration Review, 2017(1):104-128.)
[16] 张毅, 杨奕, 邓雯. 网络在线信任影响因素研究综述[J]. 数据分析与知识发现, 2020, 4(5):15-26.
[16] ( Zhang Yi, Yang Yi, Deng Wen. A Systematic Review of Factors Influencing Online Trust[J]. Data Analysis and Knowledge Discovery, 2020, 4(5):15-26.)
[17] Walter F E, Battiston S, Schweitzer F. A Model of a Trust-Based Recommendation System on a Social Network[J]. Autonomous Agents and Multi-Agent Systems, 2008, 16(1):57-74.
doi: 10.1007/s10458-007-9021-x
[18] 陈婷, 朱青, 周梦溪, 等. 社交网络环境下基于信任的推荐算法[J]. 软件学报, 2017, 28(3):721-731.
[18] ( Chen Ting, Zhu Qing, Zhou Mengxi, et al. Trust-Based Recommendation Algorithm in Social Network[J]. Journal of Software, 2017, 28(3):721-731.)
[19] 景东, 张大勇. 社交媒体环境下用户信任度评估与传播影响力研究[J]. 数据分析与知识发现, 2018, 2(7):26-33.
[19] ( Jing Dong, Zhang Dayong. Assessing Trust-Based Users' Influence in Social Media[J]. Data Analysis and Knowledge Discovery, 2018, 2(7):26-33.)
[20] 韩康康, 徐建民, 张彬. 融合用户兴趣和多维信任度的微博推荐[J]. 数据分析与知识发现, 2020, 4(12):95-104.
[20] ( Han Kangkang, Xu Jianmin, Zhang Bin. Recommending Microblogs with User's Interests and Multidimensional Trust[J]. Data Analysis and Knowledge Discovery, 2020, 4(12):95-104.)
[21] 文俊浩, 何波, 胡远鹏. 基于社交网络用户信任度的混合推荐算法研究[J]. 计算机科学, 2016, 43(1):255-258.
[21] ( Wen Junhao, He Bo, Hu Yuanpeng. Hybrid Recommendation Algorithm Based on User's Trust in Social Networks[J]. Computer Science, 2016, 43(1):255-258.)
[22] 郑琼, 周梅华, 曲颂. 移动社交信任评估——以新浪微博为例[J]. 情报理论与实践, 2019, 42(4):123-128.
[22] ( Zheng Qiong, Zhou Meihua, Qu Song. Trust Evaluation of Mobile Social Network Users: A Case Study of Sina Weibo[J]. Information Studies: Theory & Application, 2019, 42(4):123-128.)
[23] Asim Y, Malik A K, Raza B, et al. A Trust Model for Analysis of Trust, Influence and Their Relationship in Social Network Communities[J]. Telematics & Informatics, 2019, 36:94-116.
[24] 汤志伟, 钟宗炬, 侯艳君, 等. 2000-2016年国内外电子政务公众信任研究述评[J]. 电子政务, 2017(8):99-111.
[24] ( Tang Zhiwei, Zhong Zongju, Hou Yanjun, et al. Review of Research on Public Trust in E-government at Home and Abroad from 2000 to 2016[J]. E-Government, 2017(8):99-111.)
[25] 冯小东, 马捷, 蒋国银. 社会信任、理性行为与政务微博传播:基于文本挖掘的实证研究[J]. 情报学报, 2019, 38(9):954-965.
[25] ( Feng Xiaodong, Ma Jie, Jiang Guoyin. Government Microblogs' Dissemination: An Empirical Analysis Based on Text Mining[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(9):954-965.)
[26] 沙勇忠, 阎劲松, 王峥嵘 雅安地震后红十字会的公众信任研究——基于微博数据的网民情感分析[J]. 公共管理学报, 2015, 12(3):93-104.
[26] ( Sha Yongzhong, Yan Jinsong, Public Trust on the Red Cross Society of China after Ya'an Earthquake——Analysis Based on Sentiment Analysis of Microblog Data[J]. Journal of Public Management, 2015, 12(3):93-104.)
[27] 曹树金, 常倞玮. 社交媒体中的突发公共卫生事件信息可信度影响因素研究——以微信为例[J]. 现代情报, 2020, 40(9):3-14.
[27] ( Cao Shujin, Chang Jingwei. Research on the Influencing Factors of Information Credibility of Public Health Emergencies in Social Media——Take WeChat as an Example[J]. Journal of Modern Information, 2020, 40(9):3-14.)
[28] 安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017, 61(20):120-130.
[28] ( An Lu, Ou Menghua. Social Network Sentiment Map of the Stakeholders in Public Health Emergencies[J]. Library and Information Service, 2017, 61(20):120-130.)
[29] 罗闯, 安璐, 徐健, 等. 突发事件网络舆情关注点演化研究——基于利益相关者视角[J]. 图书馆学研究, 2018(16):36-42.
[29] ( Luo Chuang, An Lu, Xu Jian, et al. A Study of Online Public Opinion for Emergency Based on Stakeholder Theory[J]. Research on Library Science, 2018(16):36-42.)
[30] Fink S. Crisis Management: Planning for the Inevitable[M]. New York: American Management Association, 1986.
[31] 李磊, 吴旭辉, 刘继. 融合关键对象识别与深层自注意力的Bi-LSTM情感分析模型[J]. 小型微型计算机系统, 2021, 42(3):504-509.
[31] ( Li Lei, Wu Xuhui, Liu Ji. Sentiment Analysis Model of Bi-LSTM with Key Opinion Target Recognition and Deeper Self-attention[J]. Journal of Chinese Computer Systems, 2021, 42(3):504-509.)
[32] 谷兴龙, 谢珺, 靳红伟, 等. 基于词特征与语义特征的评价对象识别[J]. 计算机工程, 2019, 45(11):218-224.
[32] ( Gu Xinglong, Xie Jun, Jin Hongwei, et al. Comment Object Recognition Based on Word Feature and Semantic Feature[J]. Computer Engineering, 2019, 45(11):218-224.)
[33] Jiao Z, Sun S, Sun K. Chinese Lexical Analysis with Deep Bi-GRU-CRF Network[OL]. arXiv Preprint, arXiv:1807.01882, 1807.01882.
[34] Tian H, Gao C, Xiao X Y, et al. SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 4067-4076.
[35] 人民网舆情数据中心. 2020年上半年度政务微博影响力报告[R/OL].(2020-08-21)[2021-06-02]. http://yuqing.people.com.cn/n1/2020/0821/c209043-31831967.html .
[35] (人民网舆情数据中心. Computer Engineering[R/OL].(2020-08-21)[2021-06-02]. http://yuqing.people.com.cn/n1/2020/0821/c209043-31831967.html .
[36] 南方都市报. 记疫[EB/OL].[2021-06-02]. https://m.mp.oeeee.com/h5/pages/v20/nCovTimeline .
[36] (Nanfang Metropolis Daily. Timeline of COVID-19[EB/OL]. [2021-06-02]. https://m.mp.oeeee.com/h5/pages/v20/nCovTimeline .)
[37] 陈娟, 刘燕平, 邓胜利. 政务微博辟谣信息传播效果的影响因素研究[J]. 情报科学, 2018, 36(1):91-95, 117.
[37] ( Chen Juan, Liu Yanping, Deng Shengli. An Analysis on Factors Influencing the Dissemination Effect of Rumor-refuting Information[J]. Information Science, 2018, 36(1):91-95, 117.)
[1] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[2] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[3] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[4] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[5] Liu Qian, Li Chenliang. A Survey of Topic Evolution on Social Media[J]. 数据分析与知识发现, 2020, 4(8): 1-14.
[6] Li Gang, Guan Weidong, Ma Yaxue, Mao Jin. Predicting Social Media Visibility of Scholarly Articles[J]. 数据分析与知识发现, 2020, 4(8): 63-74.
[7] Nie Lei,Fu Juan,Yi Chengqi,Yang Daoling. Measuring Enterprise’s Offline Resumption with Mobile Device Positioning Data[J]. 数据分析与知识发现, 2020, 4(7): 38-49.
[8] Ying Tan,Jin Zhang,Lixin Xia. A Survey of Sentiment Analysis on Social Media[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
[9] Lin Wang,Ke Wang,Jiang Wu. Public Opinion Propagation and Evolution of Public Health Emergencies in Social Media Era: A Case Study of 2018 Vaccine Event[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[10] Xiwei Wang,Duo Wang,Qingxiao Zheng,Ya’nan Wei. Information Interaction Between User and Enterprise in Online Brand Community: A Study of Virtual Reality Industry[J]. 数据分析与知识发现, 2019, 3(3): 83-94.
[11] Xiaoxiao Zhu,Zunqi Yang,Jing Liu. Construction of an Adverse Drug Reaction Extraction Model Based on Bi-LSTM and CRF[J]. 数据分析与知识发现, 2019, 3(2): 90-97.
[12] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[13] Gang Li,Sijing Chen,Jin Mao,Yansong Gu. Spatio-Temporal Comparison of Microblog Trending Topics on Natural Disasters[J]. 数据分析与知识发现, 2019, 3(11): 1-15.
[14] Li Lei,He Daqing,Zhang Chengzhi. Survey on Social Question and Answer[J]. 数据分析与知识发现, 2018, 2(7): 1-12.
[15] Jing Dong,Zhang Dayong. Assessing Trust-Based Users’ Influence in Social Media[J]. 数据分析与知识发现, 2018, 2(7): 26-33.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn