|
|
Identifying Emerging Technology with LDA Model and Shared Semantic Space——Case Study of Autonomous Vehicles |
Zhou Yunze,Min Chao( ) |
School of Information Management, Nanjing University, Nanjing 210023, China |
|
|
Abstract [Objective] The paper proposed a new method to identify emerging technologies using shared semantic model and multi-source data. [Methods] We used the LDA model to detect the topics of multi-source data. Then, we utilized the Word2Vec model to create vectors for these topics based on the representative words and their weights. Third, we merged the topics, and used topic strength and novelty to identify emerging technologies. [Results] We found seven emerging technoligies from the field of Autonomous Vechicles, including Driver Switching, Selection and Control of Travel Path, Lane Change Safety, Motion Estimation and Risk Aversion, Structure Design, Perception of the Environment, as well as Communication Technology and Communication Security. [Limitations] More research is needed to explore better ways to determine the threshold and find fine-grained topics. [Conclusions] The proposed method is able to detect emerging topics using data from multiple sources, which optimizes the exisiting methods.
|
Received: 28 August 2021
Published: 14 April 2022
|
|
Fund:Social Science Fund of Jiangsu Province(18TQC005);Fundamental Research Funds for the Central Universities(14380005) |
Corresponding Authors:
Min Chao,ORCID:0000-0002-0627-995X
E-mail: mc@nju.edu.cn
|
[1] |
乔治·戴, 保罗·休梅克. 沃顿论新兴技术管理[M]. 石莹, 等译. 北京: 华夏出版社, 2002.
|
[1] |
( Day G, Schoemaker P. Wharton on Managing Emerging Technologies[M]. Translated by Shi Ying, et al. Beijing: Huaxia Publishing House, 2002.)
|
[2] |
白如江, 刘博文, 冷伏海. 基于多维指标的未来新兴科学研究前沿识别研究[J]. 情报学报, 2020, 39(7):747-760.
|
[2] |
( Bai Rujiang, Liu Bowen, Leng Fuhai. Frontier Identification of Emerging Scientific Research Based on Multi-indicators[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(7):747-760.)
|
[3] |
许晓阳, 郑彦宁, 刘志辉. 论文和专利相结合的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(24):97-106.
|
[3] |
( Xu Xiaoyang, Zheng Yanning, Liu Zhihui. Study on the Method of Identifying Research Fronts Based on Scientific Papers and Patents[J]. Library and Information Service, 2016, 60(24):97-106.)
|
[4] |
唐恒, 邱悦文. 多源信息视角下的多指标新兴技术主题识别研究——以智能网联汽车领域为例[J]. 情报杂志, 2021, 40(3):81-88.
|
[4] |
( Tang Heng, Qiu Yuewen. Emerging Technology Topic Identification Based on Multi-Source Information: Intelligent Connected Vehicle as an Example[J]. Journal of Intelligence, 2021, 40(3):81-88.)
|
[5] |
王兴旺, 董珏, 余婷婷, 等. 基于多种类型信息计量分析的前沿技术预测方法研究[J]. 情报杂志, 2018, 37(10):70-75, 89.
|
[5] |
( Wang Xingwang, Dong Jue, Yu Tingting, et al. Research on Technology Fronts Forecasting Method Based on Informetrics Analysis Using Multi-Type Information[J]. Journal of Intelligence, 2018, 37(10):70-75, 89.)
|
[6] |
徐磊. 技术预见方法的探索与实践思考——基于德尔菲法和技术路线图的对接[J]. 科学学与科学技术管理, 2011, 32(11):37-41.
|
[6] |
( Xu Lei. The Research of Technology Foresight Method:Based on Delphi and Technology Roadmap Integration[J]. Science of Science and Management of S. & T., 2011, 32(11):37-41.)
|
[7] |
周源, 刘宇飞, 薛澜. 一种基于机器学习的新兴技术识别方法: 以机器人技术为例[J]. 情报学报, 2018, 37(9):939-955.
|
[7] |
( Zhou Yuan, Liu Yufei, Xue Lan. An Approach to Identify Emerging Technologies Using Machine Learning: A Case Study of Robotics[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(9):939-955.)
|
[8] |
Glänzel W. Bibliometric Methods for Detecting and Analysing Emerging Research Topics[J]. El Profesional de la Informacion, 2012, 21(2):194-201.
doi: 10.3145/epi.2012.mar.11
|
[9] |
李蓓, 陈向东. 海峡两岸核心及新兴技术比较—基于专利引文网络的分析[J]. 科研管理, 2015, 36(2):96-106.
|
[9] |
( Li Bei, Chen Xiangdong. Comparative Analysis of Core and Emerging Technologies Between Mainland China and Taiwan Based on Patent Citation Network[J]. Science Research Management, 2015, 36(2):96-106.)
|
[10] |
Érdi P, Makovi K, Somogyvári Z, et al. Prediction of Emerging Technologies Based on Analysis of the US Patent Citation Network[J]. Scientometrics, 2013, 95(1):225-242.
doi: 10.1007/s11192-012-0796-4
|
[11] |
梁帅, 纪晓彤, 李杨. 科学计量学在技术预见中的应用研究——以新能源汽车产业为例[J]. 情报杂志, 2015, 34(2):73-78.
|
[11] |
( Liang Shuai, Ji Xiaotong, Li Yang. Application of Patent Scientometrics Methods in Technology Foresight: Take the New Energy Automobile as an Example[J]. Journal of Intelligence, 2015, 34(2):73-78.)
|
[12] |
陈超美, 陈悦, 侯剑华, 等. CiteSpace Ⅱ:科学文献中新趋势与新动态的识别与可视化[J]. 情报学报, 2009, 28(3):401-421.
|
[12] |
( Chen Chaomei, Chen Yue, Hou Jianhua, et al. CiteSpace Ⅱ: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(3):401-421.)
|
[13] |
苏敬勤, 刘建华, 王智琦, 等. 颠覆性技术的演化轨迹及早期识别——以智能手机等技术为例[J]. 科研管理, 2016, 37(3):13-20.
|
[13] |
( Su Jingqin, Liu Jianhua, Wang Zhiqi, et al. The Evolution Trajectory and Early Identification of Disruptive Technology by Taking Smartphones and Other Technologies as an Example[J]. Science Research Management, 2016, 37(3):13-20.)
|
[14] |
Shibata N, Kajikawa Y, Takeda Y, et al. Detecting Emerging Research Fronts in Regenerative Medicine by the Citation Network Analysis of Scientific Publications[J]. Technological Forecasting and Social Change, 2011, 78(2):274-282.
doi: 10.1016/j.techfore.2010.07.006
|
[15] |
李欣, 谢前前, 黄鲁成, 等. 基于SAO结构语义挖掘的新兴技术演化轨迹研究[J]. 科学学与科学技术管理, 2018, 39(1):17-31.
|
[15] |
( Li Xin, Xie Qianqian, Huang Lucheng, et al. Researching on Evolution Trace of Emerging Technology Based on Subject-Action-Object Semantic Mining[J]. Science of Science and Management of S.&T., 2018, 39(1):17-31.)
|
[16] |
Xu S, Hao L Y, An X, et al. Emerging Research Topics Detection with Multiple Machine Learning Models[J]. Journal of Informetrics, 2019, 13(4):100983.
doi: 10.1016/j.joi.2019.100983
|
[17] |
董放, 刘宇飞, 周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志, 2017, 36(7):40-45, 133.
|
[17] |
( Dong Fang, Liu Yufei, Zhou Yuan. Prediction of Emerging Technologies Based on LDA-SVM Multi-Class Abstract of Paper Classification[J]. Journal of Intelligence, 2017, 36(7):40-45, 133.)
|
[18] |
武川, 王宏起, 李玥, 等. 战略性新兴产业前沿技术领域预测与合作潜力——基于主题相似网络关系的分析视角[J]. 系统工程, 2021, 39(4):151-158.
|
[18] |
( Wu Chuan, Wang Hongqi, Li Yue, et al. Forecast and Cooperation Potential of Frontier Technology Fields of Strategic Emerging Industries——Based on the Perspective of Network Relationships with Similar Topics[J]. Systems Engineering, 2021, 39(4):151-158.)
|
[19] |
Xu S, Hao L Y, Yang G C, et al. A Topic Models Based Framework for Detecting and Forecasting Emerging Technologies[J]. Technological Forecasting and Social Change, 2021, 162:120366.
doi: 10.1016/j.techfore.2020.120366
|
[20] |
李蓓, 陈向东. 基于专利引用耦合聚类的纳米领域新兴技术识别[J]. 情报杂志, 2015, 34(5):35-40.
|
[20] |
( Li Bei, Chen Xiangdong. Identification of Emerging Technologies in Nanotechnology Based on Citing Coupling Clustering of Patents[J]. Journal of Intelligence, 2015, 34(5):35-40.)
|
[21] |
宋欣娜, 郭颖, 席笑文. 基于专利文献的多指标新兴技术识别研究[J]. 情报杂志, 2020, 39(6):76-81, 88.
|
[21] |
( Song Xinna, Guo Ying, Xi Xiaowen. Research on Multi-Indicator Emerging Technology Identification Based on Patent Literature[J]. Journal of Intelligence, 2020, 39(6):76-81, 88.)
|
[22] |
何春辉. 基于引文分析和深度学习的新兴技术识别算法研究[D]. 湘潭: 湘潭大学, 2017.
|
[22] |
( He Chunhui. Emerging Technology Identification Algorithm of Study Based on Citation Analysis and Deep Learning[D]. Xiangtan: Xiangtan University, 2017.)
|
[23] |
张洋, 林宇航, 侯剑华. 基于融合数据和生命周期的技术预测方法: 以病毒核酸检测技术为例[J]. 情报学报, 2021, 40(5):462-470.
|
[23] |
( Zhang Yang, Lin Yuhang, Hou Jianhua. Technology Prediction Method Based on Data Fusion and Life Cycle: Empirical Analysis of Virus Nucleic Acid Detection[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(5):462-470.)
|
[24] |
董坤, 吴红. 基于论文-专利整合的3D打印技术研究热点分析[J]. 情报杂志, 2014, 33(11):73-76, 61.
|
[24] |
( Dong Kun, Wu Hong. Research Focuses of 3D Printing Technology Based on Paper-Patent[J]. Integration Journal of Intelligence, 2014, 33(11):73-76, 61.)
|
[25] |
徐路路, 王效岳, 白如江. 基于PLDA模型与多数据源融合相关性分析的新兴主题探测研究——以石墨烯领域为例[J]. 情报理论与实践, 2018, 41(4):63-69, 43.
|
[25] |
( Xu Lulu, Wang Xiaoyue, Bai Rujiang. Research on the Emerging Topic Detection Based on the Correlation Analysis of PLDA Model and Multiple Data Source Fusion[J]. Information Studies: Theory & Application, 2018, 41(4):63-69, 43.)
|
[26] |
许晓阳, 郑彦宁, 刘志辉. 论文和专利相结合的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(24):97-106.
|
[26] |
( Xu Xiaoyang, Zheng Yanning, Liu Zhihui. Study on the Method of Identifying Research Fronts Based on Scientific Papers and Patents[J]. Library and Information Service, 2016, 60(24):97-106.)
|
[27] |
徐红姣, 曾文, 张运良. 基于Word2Vec的论文和专利主题关联演化分析方法研究[J]. 情报杂志, 2018, 37(12):36-42.
|
[27] |
( Xu Hongjiao, Zeng Wen, Zhang Yunliang. Paper-Patent Topic Linkage Evolution Analysis Method Based on Word2Vec[J]. Journal of Intelligence, 2018, 37(12):36-42.)
|
[28] |
Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3(4/5):993-1022.
|
[29] |
Stevens K, Kegelmeyer P, Andrzejewski D, et al. Exploring Topic Coherence Over Many Models and Many Topics[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2012: 952-961.
|
[30] |
Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
|
[31] |
黄贤英, 刘广峰, 刘小洋, 等. 基于Word2Vec和双向LSTM的情感分类深度模型[J]. 计算机应用研究, 2019, 36(12):3583-3587.
|
[31] |
( Huang Xianying, Liu Guangfeng, Liu Xiaoyang, et al. Sentiment Classification Depth Model Based on Word2Vec and Bi-Directional LSTM[J]. Application Research of Computers, 2019, 36(12):3583-3587.)
|
[32] |
冯佳, 张云秋. 基于LDA和本体的科学前沿识别与分析方法研究[J]. 情报理论与实践, 2017, 40(8):49-54.
|
[32] |
( Feng Jia, Zhang Yunqiu. Research on the Method of Detecting and Analyzing Scientific Fronts Based on LDA and Ontology[J]. Information Studies: Theory & Application, 2017, 40(8):49-54.)
|
[33] |
Preparing for the Future of Transportation: Automated Vehicles 3.0[R/OL].[2021-07-09]. https://www.transportation.gov/av/3.
|
[34] |
李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1):1-14.
|
[34] |
( Li Keqiang, Dai Yifan, Li Shengbo, et al. State-Of-The-Art and Technical Trends of Intelligent and Connected Vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1):1-14.)
|
[35] |
Yao H D, Li X P. Decentralized Control of Connected Automated Vehicle Trajectories in Mixed Traffic at an Isolated Signalized Intersection[J]. Transportation Research Part C Emerging Technologies, 2020, 121:102846.
doi: 10.1016/j.trc.2020.102846
|
[36] |
邓晓峰, 王润民, 徐志刚, 等. 我国智能网联汽车测试及示范基地发展现状[J]. 汽车工业研究, 2019 (1):6-13.
|
[36] |
( Deng Xiaofeng, Wang Runmin, Xu Zhigang, et al. Development Status of Test and Demonstration Base of ntelligent and Connected Vehicles in China[J]. Auto Industry Research, 2019 (1):6-13.)
|
[37] |
黄钰峰, 高艺鹏. 我国智能网联汽车技术及测试现状分析[J]. 汽车实用技术, 2019(15):26-28.
|
[37] |
( Huang Yufeng, Gao Yipeng. Analysis on the Technology and Testing Status of Intelligent Connected Vehicle in China[J]. Automobile Technology, 2019(15):26-28.)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|