Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (2/3): 212-221    DOI: 10.11925/infotech.2096-3467.2021.0948
Current Issue | Archive | Adv Search |
Mining Enterprise Associations with Knowledge Graph
Hou Dang1,3,4,Fu Xiangling1,3,4(),Gao Songfeng2,Peng Lei2,Wang Youjun2,Song Meiqi1,3,4
1School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876, China
2Huarong Rongtong(Beijing) Technology Co.,Ltd., Beijing 100033, China
3BUPT and Huarong Joint Lab of Smart Finance, Beijing 100876, China
4BUPT and Key Laboratory of Trustworthy Distributed Computing and Service, Beijing 100876, China
Download: PDF (1104 KB)   HTML ( 18
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to explore relationships among enterprises in production and operation with the help of knowledge graph, aiming to provide new directions for risk management and valuation. [Context] In production and operation, there are enormous complex relationships containing valuable information. [Methods] We used the structured enterprise data tables to construct the enterprise knowledge graph, which helped us search the association between enterprises, and find the actual controller of enterprises and the affiliated groups. [Results] The constructed knowledge graph included more than 1.4 million entities, such as companies and individuals, and more than 3 million relationships on equity, guarantee, senior management, investment and so on. Based on the path and search algorithm of the graph, we found the association, actual controller and the affiliations. [Conclusions] The proposed algorithm could effectivley identify the hidden enterprise association relationship.

Key wordsEnterprise Relationship Network      Knowledge Graph      Association Mining     
Received: 31 August 2021      Published: 14 April 2022
ZTFLH:  TP391  
Fund:National Natural Science Foundation of China(91546121)
Corresponding Authors: Fu Xiangling,ORCID: 0000-0002-1492-2829     E-mail:

Cite this article:

Hou Dang, Fu Xiangling, Gao Songfeng, Peng Lei, Wang Youjun, Song Meiqi. Mining Enterprise Associations with Knowledge Graph. Data Analysis and Knowledge Discovery, 2022, 6(2/3): 212-221.

URL:     OR

Enterprise Relationship Network
The Approach of Construcing Knowledge Graph
实体类型 关键属性
公司(company) 组织机构代码、注册资本、企业类型
个人(person) 姓名、个人证件、联系方式
Entity Types and Key Properties
关系两边的实体 关系类型 关键属性
公司-公司 股东关系 持股比例
公司-公司 投资关系 投资比例
公司-公司 担保关系 关系类型
公司-公司 分支关系 关系类型
个人-公司 股东关系 持股比例
个人-公司 投资关系 投资比例
Relationship Types and Key Properties
Knowledge Graph Ontology
The Example of Knowledge Graph
The Example Graph of Association Path Query
The Example Graph of Shareholding Relationship in Enterprise Knowledge Graph
The Result of Assosication Path Query
Calcuation Diagram of Shareholding Ratio
The Example Graph of Enterprise Group Discovery
The Result of Enterprise Group Discovery in Knowledge Graph
算法 Precision Recall
企业实际控制人 93.70% -
企业所属集团 90.41% 81.97%
Evaluation of Two Algorithms
[1] 阮彤, 王梦婕, 王昊奋, 等. 垂直知识图谱的构建与应用研究[J]. 知识管理论坛, 2016, 1(3):226-234.
[1] ( Ruan Tong, Wang Mengjie, Wang Haofen, et al. Research on the Construction and Application of Vertical Knowledge Graphs[J]. Knowledge Management Forum, 2016, 1(3):226-234.)
[2] Richens R H. Preprogramming for Mechanical Translation[J]. Mechanical Translation, 1956, 3(1):20-25.
[3] Berners-Lee T, Hendler J, Lassila O. The Semantic Web[J]. Scientific American, 2001, 284(5):34-43.
[4] Bizer C, Lehmann J, Kobilarov G, et al. DBpedia - A Crystallization Point for the Web of Data[J]. Journal of Web Semantics, 2009, 7(3):154-165.
doi: 10.1016/j.websem.2009.07.002
[5] Biega J, Kuzey E, Suchanek F M. Inside YAGO2s: A Transparent Information Extraction Architecture[C]// Proceedings of the 22nd International Conference on World Wide Web - WWW’13 Companion. New York: ACM Press, 2013: 325-328.
[6] Bollacker K, Evans C, Paritosh P, et al. Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. 2008: 1247-1250.
[7] 奥德玛, 杨云飞, 穗志方, 等. 中文医学知识图谱CMeKG构建初探[J]. 中文信息学报, 2019, 33(10):1-9.
[7] ( Ao Dema, Yang Yunfei, Sui Zhifang, et al. Preliminary Study on the Construction of Chinese Medical Knowledge Graph[J]. Journal of Chinese Information Processing, 2019, 33(10):1-9.)
[8] 张靖宜, 贺光辉, 代洲, 等. 融入BERT的企业年报命名实体识别方法[J]. 上海交通大学学报, 2021, 55(2):117-123.
[8] ( Zhang Jingyi, He Guanghui, Dai Zhou, et al. Named Entity Recognition of Enterprise Annual Report Integrated with BERT[J]. Journal of Shanghai JiaoTong University, 2021, 55(2):117-123.)
[9] 刘波. 面向企业图谱的实体链接技术的研究[D]. 南京: 东南大学, 2019.
[9] ( Liu Bo. Entity Linking Technology for Enterprise Knowledge Graph[D]. Nanjing: Southeast University, 2019.)
[10] Xia Y Q, Su W F, Lau R Y K, et al. Discovering Latent Commercial Networks from Online Financial News Articles[J]. Enterprise Information Systems, 2013, 7(3):303-331.
doi: 10.1080/17517575.2011.621093
[11] 孙晨, 付英男, 程文亮, 等. 面向企业知识图谱构建的中文实体关系抽取[J]. 华东师范大学学报(自然科学版), 2018(3):55-66.
[11] ( Sun Chen, Fu Yingnan, Cheng Wenliang, et al. Chinese Named Entity Relation Extraction for Enterprise Knowledge Graph Construction[J]. Journal of East China Normal University (Natural Science), 2018(3):55-66.)
[12] 吕华揆, 洪亮, 马费成. 金融股权知识图谱构建与应用[J]. 数据分析与知识发现, 2020, 4(5):27-37.
[12] ( Lv Huakui, Hong Liang, Ma Feicheng. Constructing Knowledge Graph for Financial Equities[J]. Data Analysis and Knowledge Discovery, 2020, 4(5):27-37.)
[13] Paolo A, Luigi B, Michela I, et al. Weaving Enterprise Knowledge Graphs: The Case of Company Ownership Graphs[C]// Proceedings of the 23rd International Conference on Extending Database Technology, Copenhagen, Denmark. 2020: 555-566.
[14] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606.
[14] ( Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606.)
[15] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3):582-600.
[15] ( Liu Qiao, Li Yang, Duan Hong, et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development, 2016, 53(3):582-600.)
[16] 王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(7):2139-2174.
[16] ( Wang Xin, Zou Lei, Wang Chaokun, et al. Research on Knowledge Graph Data Management: A Survey[J]. Journal of Software, 2019, 30(7):2139-2174.)
[17] 鲁佳文, 严丽. 对象关系数据库到RDF(S)的映射方法[J]. 计算机科学, 2021, 48(10):145-151.
[17] ( Lu Jiawen, Yan Li. Mapping Method from Object-Relational Database to RDF(S)[J]. Computer Science, 2021, 48(10):145-151.)
[18] 王昊奋, 丁军, 胡芳槐, 等. 大规模企业级知识图谱实践综述[J]. 计算机工程, 2020, 46(7):1-13.
[18] ( Wang Haofen, Ding Jun, Hu Fanghuai, et al. Survey on Large Scale Enterprise-Level Knowledge Graph Practices[J]. Computer Engineering, 2020, 46(7):1-13.)
[19] 于慧琳, 陈炜, 王琪, 等. 使用子图推理实现知识图谱关系预测[J/OL]. 计算机科学与探索, 2021: 1-9.
[19] ( Yu Huilin, Chen Wei, Wang Qi, et al. Knowldege Graph Link Prediction Based on Subgraph Reasoning[J/OL]. Journal of Frontiers of Computer Science & Technology, 2021: 1-9.)
[20] Ruan T, Xue L J, Wang H F, et al. Building and Exploring an Enterprise Knowledge Graph for Investment Analysis[C]//Proceedings of the 15th International Semantic Web Conference. Cham: Springer International Publishing, 2016: 418-436.
[1] Zhang Wei, Wang Hao, Chen Yuetong, Fan Tao, Deng Sanhong. Identifying Metaphors and Association of Chinese Idioms with Transfer Learning and Text Augmentation[J]. 数据分析与知识发现, 2022, 6(2/3): 167-183.
[2] Liu Zhenghao, Qian Yuxing, Yi Tianlong, Lv Huakui. Constructing Knowledge Graph for Financial Securities and Discovering Related Stocks with Knowledge Association[J]. 数据分析与知识发现, 2022, 6(2/3): 184-201.
[3] Cheng Zijia, Chen Chong. Question Comprehension and Answer Organization for Scientific Education of Epidemics[J]. 数据分析与知识发现, 2022, 6(2/3): 202-211.
[4] Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[5] Shen Kejie, Huang Huanting, Hua Bolin. Constructing Knowledge Graph with Public Resumes[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[6] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[7] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[8] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[9] Zhu Dongliang, Wen Yi, Wan Zichen. Review of Recommendation Systems Based on Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
[10] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[11] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[12] Lv Huakui,Hong Liang,Ma Feicheng. Constructing Knowledge Graph for Financial Equities[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[13] Sun Xinrui,Meng Yu,Wang Wenle. Identifying Traffic Events from Weibo with Knowledge Graph and Target Detection[J]. 数据分析与知识发现, 2020, 4(12): 136-147.
[14] Zhu Chaoyu, Liu Lei. A Review of Medical Decision Supports Based on Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(12): 26-32.
[15] Hu Zhengyin,Liu Leilei,Dai Bing,Qin Xiaochu. Discovering Subject Knowledge in Life and Medical Sciences with Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(11): 1-14.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938