Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (2/3): 138-150    DOI: 10.11925/infotech.2096-3467.2021.0967
Current Issue | Archive | Adv Search |
Simulating Dynamics Prediction with Collaborative Allocation System for Blockchain Resources: Case Study of Guangdong-HongKong-Macao Greater Bay Area
Wang Xiaoqing1,2,3(),Chen Dong4
1School of Public Administration, Nanjing University of Finance & Economics, Nanjing 210023, China
2College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
3Nanjing University of Finance & Economics Hongshan College, Nanjing 210003, China
4Big Data Development, State Information Center, Beijing 100045, China
Download: PDF (1763 KB)   HTML ( 9
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper analyzes the interaction mechanism among key resource allocations in each blockchain, aiming to construct better regional economic blockchains and promote the coordinated economic development. [Methods] Based on the analysis of resource allocation elements in the blockchain and system dynamics theories and methods, we used the Vensim system to simulate and analyze the related blockchain industries. [Results] (Ⅰ) Sensitivity analysis showed: industry chain = capital chain> talent chain> innovation chain; (Ⅱ) In terms of industry chain, the year of 2030 is a key node; (Ⅲ) For capital chain, the years from 2021 to 2025 is the key time period; (Ⅳ) In the talent chain, the years from 2025 to 2035 is the key time period; (Ⅴ) For innovation chain, the whole time is the key node. [Limitations] More research is needed to improve the selection of influencing factors for the “five chains” and examine their internal mechanism thoroughly. [Conclusions] The proposed method provides some guidance for predicting results of resource collaborative allocation.

Key wordsGuangdong-HongKong-Macao Greater Bay Area      Collaborative Resource Allocation      System Dynamics      Vensim Simulation      Correlation      Sensitivity     
Received: 31 August 2021      Published: 07 January 2022
ZTFLH:  TP393  
Fund:National Social Science Fund of China(18CSH018)
Corresponding Authors: Wang Xiaoqing,ORCID:0000-0001-9383-0852     E-mail: wxq@nufe.edu.cn

Cite this article:

Wang Xiaoqing, Chen Dong. Simulating Dynamics Prediction with Collaborative Allocation System for Blockchain Resources: Case Study of Guangdong-HongKong-Macao Greater Bay Area. Data Analysis and Knowledge Discovery, 2022, 6(2/3): 138-150.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2021.0967     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2022/V6/I2/3/138

Blockchain Resource Collaborative Allocation System Model
Comprehensive Effectiveness System Model
Comprehensive Effectiveness of Five-Chain-Collaborative System Simulation
Industrial Chain Agglomeration Effectiveness System Model
Simulation Results of Industrial Chain Agglomeration Effect
Measurement of Collaborative Agglomeration Between Manufacturing and Service Industries
Innovation Chain Linkage Effectiveness System Model
Simulation Results of Innovation Chain Connection Effectiveness
Declining Trend of Patents and Scientific Research Cooperation Networks
Talent Chain Cultivation Effectiveness System Model
Simulation Results of Talent Chain Cultivation
Talent Supply and Demand Development Trend
Fund Chain Activation Effectiveness System Model
Simulation Results of Activation Effect of Capital Chain
Simulation Results of Regional Investment Heat
Sensitivity Simulation
[1] 谭敏生, 杨杰, 丁琳, 等. 区块链共识机制综述[J]. 计算机工程, 2020, 46(12):1-11.
[1] ( Tan Minsheng, Yang Jie, Ding Lin, et al. Review of Consensus Mechanism of Blockchain[J]. Computer Engineering, 2020, 46(12):1-11.)
[2] 发展改革委. 发展改革委关于印发《粤港澳大湾区建设、长江三角洲区域一体化发展中央预算内投资专项管理办法》的通知[J]. 中华人民共和国国务院公报, 2021(15):48-52.
[2] (National Development and Reform Commission. Circular of the National Development and Reform Commission on Printing and Issuing the Measures for Administration of Special Investment Projects within the Central Budget in the Development of Guangdong-Hong Kong-Macao Greater Bay Area and the Regional in[J]. Gazette of the State Council of the People’s Republic of China, 2021(15):48-52.)
[3] 马少华, 黎友焕. 粤港澳大湾区建设中医药高地的实现路径研究——基于产业链视角[J]. 经济研究导刊, 2021(17):1-4, 21.
[3] ( Ma Shaohua, Li Youhuan. Research on the Realization Path of Building Traditional Chinese Medicine Highland in Guangdong-Hong Kong-Macao Bay Area—Based on the Perspective of Industrial Chain[J]. Economic Research Guide, 2021(17):1-4, 21.)
[4] 吴泳成. 技术创新链视角下粤港澳大湾区创新系统协同研究[J]. 山西农经, 2020(10):26-27.
[4] ( Wu Yongcheng. Research on the Synergy of Innovation System in Guangdong-Hong Kong-Macao Greater Bay Area from the Perspective of Technological Innovation Chain[J]. Shanxi Agricultural Economy, 2020(10):26-27.)
[5] 魏红英, 黎绩, 黄慧珊, 等. 粤港澳人才合作示范区建设的功能及路径研究[J]. 汕头大学学报(人文社会科学版), 2020, 36(12):41-49.
[5] ( Wei Hongying, Li Ji, Huang Huishan, et al. Research on the Function and Path of the Construction of Talent Cooperation Demonstration Zone of Guangdong Hong Kong and Macao[J]. Journal of Shantou University (Humanities & Social Sciences Edition), 2020, 36(12):41-49.)
[6] Leem B H, Rogers K J. The Moderating Effect of Supply Chain Role on the Relationship Between Social Capital and Performance[J]. International Journal of Services and Operations Management, 2017, 26(1):18-48.
doi: 10.1504/IJSOM.2017.080676
[7] Hu G Z, Zeng W H, Yao R H, et al. An Integrated Assessment System for the Carrying Capacity of the Water Environment Based on System Dynamics[J]. Journal of Environmental Management, 2021, 295:113045.
doi: 10.1016/j.jenvman.2021.113045
[8] 王雪栋, 张明广, 钱城江, 等. 化工园区事故社会群众风险感知动态模拟研究[J]. 中国安全科学学报, 2016, 26(1):169-174.
[8] ( Wang Xuedong, Zhang Mingguang, Qian Chengjiang, et al. Dynamic Simulation of Lay Public’s Perception of Risk in Chemical Industry Park[J]. China Safety Science Journal, 2016, 26(1):169-174.)
[9] 颜嘉麒, 宋金倍, 达婧玮, 等. 基于区块链的传染病预警系统:融合复杂网络的风险度量[J]. 信息资源管理学报, 2021, 11(4):90-99.
[9] ( Yan Jiaqi, Song Jinbei, Da Jingwei, et al. A Blockchain-Based Early Warning System for Infectious Diseases: Risk Measurement Combined with Complex Network[J]. Journal of Information Resources Management, 2021, 11(4):90-99.)
[10] 王琳. 基于区块链的应急物资社会捐赠体系构建研究[J]. 情报杂志, 2021, 40(8):194-200.
[10] ( Wang Lin. Research on the Construction of Social Donation System for Emergency Supplies Based on Blockchain[J]. Journal of Intelligence, 2021, 40(8):194-200.)
[11] 温亮明, 李洋, 余波. 基于区块链技术的《科学数据管理办法》落实路径探析[J]. 现代情报, 2021, 41(8):136-146.
[11] ( Wen Liangming, Li Yang, Yu Bo. The Implementation Path of the “Scientific Data Management Rule” Based on Blockchain[J]. Journal of Modern Information, 2021, 41(8):136-146.)
[12] 周莉. 基于区块链技术的移动图书馆用户画像数据管理策略研究[J]. 图书馆工作与研究, 2021(7):49-57.
[12] ( Zhou Li. Research on Mobile Library User Portrait Data Management Strategy Based on Block Chain Technology[J]. Library Work and Study, 2021(7):49-57.)
[13] 王权堂. 区块链赋能下供应链自金融发展困境与模式创新[J]. 经济体制改革, 2021(4):152-157.
[13] ( Wang Quantang. Block Chain Enables the Supply Chain from the Financial Development Dilemma and Model Innovation[J]. Reform of Economic System, 2021(4):152-157.)
[14] 郝素利. 特种设备安全智慧治理新思路: 区块链治理[J]. 中国科技论坛, 2021(8):135-144.
[14] ( Hao Suli. New Ideas for Intelligent Regulation of Special Equipment Safety: Blockchain Regulation[J]. Forum on Science and Technology in China, 2021(8):135-144.)
[15] 韩俊华, 周全, 王宏昌. 大数据时代科技与金融融合风险及区块链技术监管[J]. 科学管理研究, 2019, 37(1):90-93.
[15] ( Han Junhua, Zhou Quan, Wang Hongchang. A Research on the Technology Finance Supervision by Blockchain[J]. Scientific Management Research, 2019, 37(1):90-93.)
[16] 杨乐, 李萌, 叶欣宇, 等. 融合边缘计算与区块链的工业互联网资源优化配置研究[J]. 高技术通讯, 2020, 30(12):1253-1263.
[16] ( Yang Le, Li Meng, Ye Xinyu, et al. Research on Resource Optimization and Allocation for Industrial Internet Based on Edge Computing and Blockchain[J]. Chinese High Technology Letters, 2020, 30(12):1253-1263.)
[17] 陈佳琦, 韩松. 区块链+全民健身公共服务: 应用优势与创新探索[J]. 西安体育学院学报, 2021, 38(1):79-86.
[17] ( Chen Jiaqi, Han Song. Block Chain+National Fitness Public Service: Application Advantages and Innovation Exploration[J]. Journal of Xi’an Physical Education University, 2021, 38(1):79-86.)
[18] 杨梦晴. 基于信息生态系统视角的移动图书馆社群化服务系统动力学仿真研究[J]. 情报科学, 2020, 38(1):153-161.
[18] ( Yang Mengqing. A System Dynamics Simulation of the Mobile Library Community Service Based on the Perspective of Information Ecosystem[J]. Information Science, 2020, 38(1):153-161.)
[19] 岳庆如, 张智光. 林纸一体化绿色供应链利益分配系统动力学仿真分析[J]. 科技管理研究, 2021, 41(10):201-209.
[19] ( Yue Qingru, Zhang Zhiguang. Dynamic Simulation Analysis of Benefit Distribution System in Forest-Paper Integration Green Supply[J]. Science and Technology Management Research, 2021, 41(10):201-209.)
[20] 徐生菊, 吉敏全. 知识共享影响农产品供应链竞争力的动力学建模与仿真[J]. 地域研究与开发, 2020, 39(3):47-52.
[20] ( Xu Shengju, Ji Minquan. Modeling and Simulation of Knowledge Sharing’s Impacts on the Competitiveness of Agricultural Products Supply Chain Based on System Dynamics[J]. Areal Research and Development, 2020, 39(3):47-52.)
[21] 王宇奇, 曲云玉. 环境扰动下进口原油供应链网络柔性的系统动力学仿真[J]. 系统管理学报, 2019, 28(5):983-990.
[21] ( Wang Yuqi, Qu Yunyu. SD Simulation of Flexibility of Imported Crude Oil Supply Chain Network under Environmental Disruption[J]. Journal of Systems & Management, 2019, 28(5):983-990.)
[22] 李启庚, 冯艳婷, 余明阳. 环境规制对工业节能减排的影响研究——基于系统动力学仿真[J]. 华东经济管理, 2020, 34(5):64-72.
[22] ( Li Qigeng, Feng Yanting, Yu Mingyang. Research on the Impact of Environmental Regulation on Industrial Energy Conservation and Emission Reduction: Based on System Dynamics Simulation[J]. East China Economic Management, 2020, 34(5):64-72.)
[23] 赵冬青, 王钦. 甘肃省经济绿色竞争力系统动力学仿真评价及预测[J]. 科技管理研究, 2020, 40(11):206-215.
[23] ( Zhao Dongqing, Wang Qin. System Dynamics Simulation and Prediction of Regional Economy Green Competitiveness in Gansu Province[J]. Science and Technology Management Research, 2020, 40(11):206-215.)
[24] 李晟婷, 周晓唯, 李娟伟. 供给侧与需求侧产业政策效应的异质性与协同性——基于中国环保产业的系统动力学仿真分析[J]. 西部论坛, 2020, 30(4):24-36.
[24] ( Li Shengting, Zhou Xiaowei, Li Juanwei. Heterogeneity and Synergy of Industrial Policy Effect at Supply Side and Demand Side: Simulation Analysis of Systematic Dynamics Based on China’s Environmental Protection Industry[J]. West Forum, 2020, 30(4):24-36.)
[25] 王中邮, 张春颜. 化学灾害中个体风险感知的系统动力学建模与仿真研究[J]. 科技管理研究, 2020, 40(9):163-169.
[25] ( Wang Zhongyou, Zhang Chunyan. System Dynamics Modeling and Simulation of Individual Risk Perception in Chemical Disaster[J]. Science and Technology Management Research, 2020, 40(9):163-169.)
[26] 梁林, 曹文蕊, 刘兵. 京津冀人才资源配置政策仿真和优化路径研究[J]. 中国人力资源开发, 2019, 36(3):91-100.
[26] ( Liang Lin, Cao Wenrui, Liu Bing. Research on Simulation and Optimization Path of Talent Resources Allocation Policy in Beijing-Tianjin-Hebei Area[J]. Human Resources Development of China, 2019, 36(3):91-100.)
[27] 欧伟强. 企业主流与新流创新的系统动力学建模与仿真[J]. 科技管理研究, 2018, 38(9):211-218.
[27] ( Ou Weiqiang. System Dynamics Modeling and Simulation of Enterprise Mainstream & Newstream Innovation[J]. Science and Technology Management Research, 2018, 38(9):211-218.)
[28] 于凌云, 李易颖. 社区智慧养老资源配置协同度评价研究[J]. 经济与管理评论, 2021, 37(4):149-160.
[28] ( Yu Lingyun, Li Yiying. Research on Evaluation of Collaborative Degree of Community Wisdom Resources Allocation for the Aged[J]. Review of Economy and Management, 2021, 37(4):149-160.)
[29] 廖楚晖, 周全林. 智慧养老服务资源配置协同的支持模型研究——基于信息集成的数据模拟[J]. 当代财经, 2020(7):38-49.
[29] ( Liao Chuhui, Zhou Quanlin. Research on the Support Model of Resource Allocation Coordination for the Intelligent Elderly Service: A Digital Simulation Based on Information Integration[J]. Contemporary Finance & Economics, 2020(7):38-49.)
[30] 王宏宇, 刘刊, 范德成. 地区工业发展与资源禀赋协同吗?——基于产业、要素、技术资源的视角[J]. 运筹与管理, 2019, 28(5):117-123.
[30] ( Wang Hongyu, Liu Kan, Fan Decheng. Is Regional Industrial Development and Resource Endowment Synergistic? —Based on Industry, Elements and Technical Resources[J]. Operations Research and Management Science, 2019, 28(5):117-123.)
[31] 李柏洲, 董恒敏. 协同创新视角下科研院所科技资源配置能力研究[J]. 中国软科学, 2018(1):53-62.
[31] ( Li Baizhou, Dong Hengmin. The Study on S & T Resources Allocation Ability of Research Institutes Based on the Characteristics of Speed[J]. China Soft Science, 2018(1):53-62.)
[32] 孙笑, 韩佳伶. 智慧数据资源优化配置策略研究[J]. 经济纵横, 2020(12):86-91.
[32] ( Sun Xiao, Han Jialing. Research on Optimal Allocation Strategy of Intelligent Data Resources[J]. Economic Review Journal, 2020(12):86-91.)
[33] 曲冲冲, 王晶, 何明珂. 京津冀协同应对自然灾害应急资源配置优化研究[J]. 运筹与管理, 2021, 30(1):36-42.
[33] ( Qu Chongchong, Wang Jing, He Mingke. Research on Resource Allocation Optimization of Synergetic Development in Beijing-Tianjin-Hebei Region[J]. Operations Research and Management Science, 2021, 30(1):36-42.)
[34] 潘玉香, 赵梦琳, 朱文宇. 京津冀协同发展背景下文化产业资源配置效率评价与对策[J]. 科技进步与对策, 2017, 34(7):49-54.
[34] ( Pan Yuxiang, Zhao Menglin, Zhu Wenyu. The Resources Allocation Efficiency Evaluation of Cultural Industry Under the Coordinated Development of Beijing-Tianjin-Hebei and Its Countermeasures[J]. Science & Technology Progress and Policy, 2017, 34(7):49-54.)
[35] 王聪, 朱先奇, 刘玎琳, 等. 京津冀协同发展中科技资源配置效率研究——基于超效率DEA-面板Tobit两阶段法[J]. 科技进步与对策, 2017, 34(19):47-52.
[35] ( Wang Cong, Zhu Xianqi, Liu Dinglin, et al. The Allocation Efficiency of S & T Resource in Beijing-Tianjin-Hebei Region Under Regional Synergistic Innovation: A Two Stage Analysis of Super-Efficiency[J]. Science & Technology Progress and Policy, 2017, 34(19):47-52.)
[36] 李梅, 孙艳艳, 胡嫣然, 等. 基于协同视角的京津冀科技资源优化配置机制构建[J]. 科技管理研究, 2021, 41(4):83-88.
[36] ( Li Mei, Sun Yanyan, Hu Yanran, et al. Construction of Optimal Allocation Mechanism of Beijing-Tianjin-Hebei Based on Synergy Perspective[J]. Science and Technology Management Research, 2021, 41(4):83-88.)
[37] 赵红梅, 隋琦. 区块链技术对资源型城市转型的影响机理研究[J]. 资源开发与市场, 2021, 37(11):1288-1294.
[37] ( Zhao Hongmei, Sui Qi. Research on the Influence Mechanism of Blockchain Technology on the Transformation of Resource-Based Cities[J]. Resource Development & Market, 2021, 37(11):1288-1294.)
[38] 刘湖, 于跃, 蒋万胜. 区块链技术、教育资源差异与经济高质量发展——基于我国高等教育资源配置状况的实证分析[J]. 陕西师范大学学报(哲学社会科学版), 2020, 49(1):145-158.
[38] ( Liu Hu, Yu Yue, Jiang Wansheng. Blockchain Technology, Educational Resource Differences, High-Quality Development of the Economy—An Empirical Analysis Based on the Distribution of Higher Education Resources in China[J]. Journal of Shaanxi Normal University (Philosophy and Social Sciences Edition), 2020, 49(1):145-158.)
[39] 孙莹, 孙良泉, 丁然, 等. 企业信用风险监测指标体系的研究[J]. 中国标准化, 2021(11):116-121.
[39] ( Sun Ying, Sun Liangquan, Ding Ran, et al. Research on Enterprise Credit Risk Monitoring Index System[J]. China Standardization, 2021(11):116-121.)
[40] 王蕴. 中国增值税税率结构优化研究[D]. 大连: 东北财经大学, 2019.
[40] ( Wang Yun. A Study on the Structure Optimization of VAT Tax Rates in China[D]. Dalian: Dongbei University of Finance and Economics, 2019.)
[41] 吴文若. 企业财务信息质量与注册制推行的市场反应[J]. 上海管理科学, 2021, 43(1):40-45.
[41] ( Wu Wenruo. Financial Information Quality of Listed Firms and Market Reaction to the Registration-Based IPO System[J]. Shanghai Management Science, 2021, 43(1):40-45.)
[42] 陈昭, 张嘉欣. 专业集聚、产业协同与城市生产力——基于粤港澳大湾区制造业与服务业的研究[J]. 湖南财政经济学院学报, 2020, 36(1):19-32.
[42] ( Chen Zhao, Zhang Jiaxin. Professional Agglomeration, Collaborative Agglomeration and Urban Productivity—Based on the Research of Manufacturing and Service Industry in Guangdong-Hong Kong-Macao Greater Bay[J]. Journal of Hunan University of Finance and Economics, 2020, 36(1):19-32.)
[43] 张美书, 葛世伦, 贾昱, 等. 基于K-核的科研合作网络凝聚性特征分析[J]. 系统工程理论与实践, 2020, 40(7):1821-1831.
doi: 10.12011/1000-6788-2019-0291-11
[43] ( Zhang Meishu, Ge Shilun, Jia Yu, et al. Analysis of Cohesive Characteristics in Scientific Collaboration Networks Based on K-Core[J]. Systems Engineering-Theory & Practice, 2020, 40(7):1821-1831.)
doi: 10.12011/1000-6788-2019-0291-11
[44] 李长文. 我国社会组织人才供需指数构建及其应用研究[J]. 社会福利(理论版), 2019(11):3-10.
[44] ( Li Changwen. Research on the Construction and Application of Talent Supply and Demand[J]. Social Welfare, 2019(11):3-10.)
[45] 夏小龙, 康明. 投资热度与财务杠杆对股票超额收益率的影响研究——基于A股市场多因子资产定价模型的实证分析[J]. 价格理论与实践, 2019(12):104-107.
[45] ( Xia Xiaolong, Kang Ming. Research on the Influence of Investment Enthusiasm and Financial Leverage on Excess Return Rate of Listed Companies—Empirical Analysis Based on the Multi-Factor Asset Pricing Model of A-Share Market[J]. Price: Theory & Practice, 2019(12):104-107.)
[46] 宓淑婧. 粤港澳大湾区制造业与生产性服务业耦合关系研究[D]. 大连: 大连海事大学, 2020.
[46] ( Mi Shujing. Study on the Coupling Relationship Between Manufacturing Industry and Productive Service Industry in Guangdong-Hong Kong-Macao Greater Bay Area[D]. Dalian: Dalian Maritime University, 2020.)
[1] Zhu Lu,Tian Xiaomeng,Cao Sainan,Liu Yuanyuan. Subspace Cross-modal Retrieval Based on High-Order Semantic Correlation[J]. 数据分析与知识发现, 2020, 4(5): 84-91.
[2] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[3] Feng Wengang,Jiang Zhaofeifan. Improving Security Checks and Passenger Risk Evaluation with Classification of Airline Passengers[J]. 数据分析与知识发现, 2020, 4(12): 105-119.
[4] Fei Liu,Xiaoqiang Cheng,Huayi Wu. Assessing Data Integrity of OpenStreetMap Based on Night Lights[J]. 数据分析与知识发现, 2019, 3(9): 36-44.
[5] Ming Yi,Tingting Zhang. Ranking Answer Quality of Popular Q&A Community[J]. 数据分析与知识发现, 2019, 3(6): 12-20.
[6] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[7] Sisi Gui,Xiaojuan Zhang,Xin Wang. Automatically Rating Query Ambiguity with Alt-Metrics[J]. 数据分析与知识发现, 2019, 3(2): 79-89.
[8] Xinrui Wang,Yue He. Predicting Stock Market Fluctuations with Social Media Behaviors: Case Study of Sina Finance Blog[J]. 数据分析与知识发现, 2019, 3(11): 108-119.
[9] Wang Daoping,Jiang Zhongyang,Zhang Boqing. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[10] Wu Pengmin,Chen Ting,Wang Xiaomei. The Correlation Between Altmetrics and Citations[J]. 数据分析与知识发现, 2018, 2(6): 58-69.
[11] Zhang Tingting,Zhao Yuxiang,Zhu Qinghua. Mining User Preferences in Crowdsourcing Community with Sensitivity Analysis[J]. 数据分析与知识发现, 2018, 2(5): 23-31.
[12] Wang Jingqi,Li Rui,Wu Huayi. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[13] Li Dong,Tong Shouchuan,Li Jiang. Analyzing Interdisciplinarity and Scientists’ Academic Impacts[J]. 数据分析与知识发现, 2018, 2(12): 1-11.
[14] He Yue,Zhu Can. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[15] Zhang Su. Information Consumption of Urban Chinese Residents: An Empirical Study Based on Dynamic Spatial Durbin Panel Model[J]. 数据分析与知识发现, 2017, 1(5): 52-61.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn