Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (1): 35-42    DOI: 10.11925/infotech.2096-3467.2021.1420
Current Issue | Archive | Adv Search |
Unified Privacy Computing Framework in Data Circulation Scenario Based on the Practice of Shenzhen Data Exchange
Zeng Jianpeng1,Zhao Zheng2(),Du Ziran3,Hong Boran4
1School of Public Management, Wuhan University, Wuhan 430072, China
2Department of Big Data Development, State Information Center, Beijing 100045, China
3Department of Platform Research and Development, Greater Bay Area Big Data Research Institute, Shenzhen 518048, China
4Department of Engineering Management, Greater Bay Area Big Data Research Institute, Shenzhen 518048, China
Download: PDF (751 KB)   HTML ( 23
Export: BibTeX | EndNote (RIS)      

[Objective] In order to ensure the safe circulation of data and promote the development of the data circulation trading market, a standardized unified privacy computing framework is constructed for the interconnection of privacy computing platforms in the data circulation scenario. [Methods] This paper summarizes the development status of privacy computing technologies and platform in recent years, and proposes a unified privacy computing framework based on data circulation scenario with reference to current data circulation problems and data exchange practices. [Results] The unified privacy computing framework proposes a “three-layer architecture, two types of interoperability and one ecology” to achieve business linkage with data exchange platform, unified supervision in the circulation process, and interconnected standard management respectively. Two types of interoperability realize the interconnection between data exchange platform and privacy computing platforms, as well as the interconnection between different privacy computing platforms. One ecology realizes the circulation and transaction ecology of data elements. [Limitations] Private computing technologies are untested for large-scale commercial use; privacy computing technology has yet to strike a balance between computing security and computing efficiency. [Conclusions] The unified privacy computing framework proposed in this paper based on the data circulation transaction scenario is conducive to the close combination of privacy computing technology and data circulation, to maximize the value of data, and to provide a reference for the realization of privacy computing interconnection.

Key wordsData Transaction and Circulation      Privacy Computing      Combine and Connect      Data Exchange Platform     
Received: 10 December 2021      Published: 22 February 2022
ZTFLH:  TP391  
Corresponding Authors: Zhao Zheng,ORCID:0000-0002-0822-7408     E-mail:

Cite this article:

Zeng Jianpeng, Zhao Zheng, Du Ziran, Hong Boran. Unified Privacy Computing Framework in Data Circulation Scenario Based on the Practice of Shenzhen Data Exchange. Data Analysis and Knowledge Discovery, 2022, 6(1): 35-42.

URL:     OR

Unified Privacy Computing Framework
Application Process of Unified Privacy Computing Framework in Shenzhen Data Exchange
[1] Gao W C, Yu W, Liang F, et al. Privacy-Preserving Auction for Big Data Trading Using Homomorphic Encryption[J]. IEEE Transactions on Network Science & Engineering, 2020, 7(2):776-791.
[2] Li D H, Yang Q Y, Yu W, et al. A Strategy-proof Privacy-preserving Double Auction Mechanism for Electrical Vehicles Demand Response in Microgrids [C]//Proceedings of the 36th International Performance Computing and Communications Conference (IPCCC). IEEE, 2017.
[3] Neela K L, Kavitha V. Enhancement of Data Confidentiality and Secure Data Transaction in Cloud Storage Environment[J]. Cluster Computing, 2018, 21:115-124.
doi: 10.1007/s10586-017-0959-4
[4] Domingo-Ferrer J. A Provably Secure Additive and Multiplicative Privacy Homomorphism [C]//Proceedings of the 5th International Conference on Information Security. 2002:471-483.
[5] Machanavajjhala A, Kifer D, Gehrke J, et al. L-diversity: Privacy Beyond k-Anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1). DOI: 10.1145/1217299. 1217302.
doi: 10.1145/1217299. 1217302
[6] Dwork C, Roth A. The Algorithmic Foundations of Differential Privacy[M]. Now Foundations and Trends, 2014.
[7] 何军. 支持数据交易的大数据试验场关键技术研究[J]. 网络安全技术与应用, 2016(9):71-72.
[7] ( He Jun. Research on Key Technologies of Big Data Testing Ground Supporting Data Trading[J]. Network Security Technology & Application, 2016(9):71-72.)
[8] Yao A C. Protocols for Secure Computations [C]//Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science. 1982.
[9] Dwork C, McSherry F, Nissim K, et al. Calibrating Noise to Sensitivity in Private Data Analysis[A]// Halevi S, Rabin T.TCC 2006, LNCS 3876, 2006:265-284.
[10] Niu C, Zheng Z, Fan W, et al. Trading Data in Good Faith: Integrating Truthfulness and Privacy Preservation in Data Markets [C]//Proceedings of IEEE International Conference on Data Engineering. IEEE, 2017.
[11] McMahan H B, Moore E, Ramage D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[OL]. arXiv Preprint, arXiv: 1602.05629.
[12] 张辰雨. 隐私计算关键技术发展趋势展望[J]. 中国工业和信息化, 2021(10):16-22.
[12] ( Zhang Chenyu. Outlook on the Development Trend of Key Technologies in Privacy Computing[J]. Science & Technology Industry of China, 2021(10):16-22.)
[13] 杨晶. 基于隐私计算技术的数据安全应用研究[J]. 中国科技产业, 2021(10):61-63.
[13] ( Yang Jing. Research on Data Security Application Based on Privacy Computing Technology[J]. China Technology Industry, 2021(10):61-63.)
[14] JR/T 0196-2020. 多方安全计算金融应用技术规范R/T 0196-2020. 多方安全计算金融应用技术规范[S]. 2020.
[14] (JR/T 0196-2020. Technical Specification for Multi-party Secure Computing Finance ApplicationsR/T 0196-2020. Technical Specification for Multi-party Secure Computing Finance Applications[S]. 2020.)
[15] IEEE P3652. 1/D6.1. IEEE Approved Draft Guide for Architectural Framework and Application of Federated Machine Learning[S]. 2020.
[16] IEEE P2842/D4. IEEE Approved Draft Recommended Practice for Secure Multi-party Computation[S]. 2021.
[17] IEEE P2830/D3. IEEE Draft Standard for Technical Framework and Requirements of Trusted Execution Environment based Shared Machine Learning[S]. 2021.
[18] 强锋, 魏博言. 联邦学习技术金融应用规范标准的研究与建立[C]// 第十八届中国标准化论坛论文集, 2021.
[18] ( Qiang Feng, Wei Boyan. Research and Establishment of the Standard of Federal Learning Technology and Finance Application[C]// Proceedings of the 18th China Standardization Forum. 2021.)
[19] 边万莉 隐私计算:行业应用潜力巨大, “不愿、不敢、不能”困境待解[N]. 21世纪经济报道, 2021-11-11(012).
[19] ( Bian Wanli. Privacy Computing: Industry Applications have Huge Potential[N]. 21st Century Business, 2021-11-11(012).
[20] 中国信通院. 数据价值释放与隐私保护计算应用研究报告[R]. 中国信通院, 2021.
[20] (China Information and Communication Institute. Research Report on Computing Applications of Data Value Release and Privacy Protection[R]. China Information and Communication Institute, 2021.)
[1] Xie Xingyu,Yu Bengong. Automatic Classification of E-commerce Comments with Multi-Feature Fusion Model[J]. 数据分析与知识发现, 2022, 6(1): 101-112.
[2] Zhang Le,Leng Jidong,Lv Xueqiang,Yuan Menglong,You Xindong. Discovering Chinese New Words Based on Multi-sense Word Embedding[J]. 数据分析与知识发现, 2022, 6(1): 113-121.
[3] Zhang Yujie,Bai Rujiang,Xu Haiyun,Han Jing,Zhao Mengmeng. Assisted TCM Diagnosis and Treatment for Diabetes with Multi NLP Tasks[J]. 数据分析与知识发现, 2022, 6(1): 122-133.
[4] Du Ziran, Dou Yue, Yi Chengqi, Hong Boran, Gu Mingze, Li Lin. TID-MOP:The Comprehensive Framework of Security Management and Control in the Scenario of Data Exchange[J]. 数据分析与知识发现, 2022, 6(1): 13-21.
[5] Dou Yue, Yi Chengqi, Huang Qianqian, Mo Xinyao, Wang Jiandong, Yu Shiyang. Constructing a Common Data Circulation Infrastructure Platform for the National Unified Data Factor Market——Technical Path and Policy Thinking of Constructing the National “Data Networking” Root Service System[J]. 数据分析与知识发现, 2022, 6(1): 2-12.
[6] Huang Qianqian, Zhao Zheng, Liu Zhaoyin. Comprehensive Management System and Technical Framework of Data Quality in the Data Circulation Transaction Scenario[J]. 数据分析与知识发现, 2022, 6(1): 22-34.
[7] Wang Xiaoqing,Sun Zhanwei,Wu Junhong,Du Ziran,Qian Chengjiang. Research Progress of Data Traceability from the Perspective of Data Element Circulation[J]. 数据分析与知识发现, 2022, 6(1): 43-54.
[8] Wang Xuefeng,Ren Huichao,Liu Yuqin. Visualization Method for Technology Theme Map with Clustering[J]. 数据分析与知识发现, 2022, 6(1): 91-100.
[9] Yu Bengong, Zhang Shuwen. Aspect-Level Sentiment Analysis Based on BAGCNN[J]. 数据分析与知识发现, 2021, 5(12): 37-47.
[10] Zhou Wenyuan, Wang Mingyang, Jing Yu. Automatic Classification of Citation Sentiment and Purposes with AttentionSBGMC Model[J]. 数据分析与知识发现, 2021, 5(12): 48-59.
[11] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[12] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[13] Dong Miao, Su Zhongqi, Zhou Xiaobei, Lan Xue, Cui Zhigang, Cui Lei. Improving PubMedBERT for CID-Entity-Relation Classification Using Text-CNN[J]. 数据分析与知识发现, 2021, 5(11): 145-152.
[14] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[15] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938