Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (7): 56-69    DOI: 10.11925/infotech.2096-3467.2021.1449
Original article Current Issue | Archive | Adv Search |
Mining Online User Profiles and Self-Presentations: Case Study of NetEase Music Community
Wu Jiang1,2,3,Liu Tao3,Liu Yang1,3()
1Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
2Center for E-commerce Research and Development, Wuhan University, Wuhan 430072, China
3School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF (1742 KB)   HTML ( 44
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper explores patterns, evolutionary laws, group differences and influences on community recognition of online users’ self-presentation topics. [Methods] Firstly, we identified online users of NetEase music community and constructed their profiles from the perspectives of qualification and participation. Then, we adopted the BERT model to cluster users’ short comments, and identified their self-presentation topics. Third, we utilized cosine similarity to analyze the evolution of topics and group differences. Finally, we used covariance to analyze the impacts of self-presentation topics on community recognition. [Results] There are eight self-presentation topics, while the proportion of “reviews” decreased and “recollection” increased. “Interaction”topics were more popular in “relax” style than in others. The proportion of each topic at different time was almost the same. Under the themes of “recollection”, the cosine similarity value of quality users was higher than those of other users. The cosine similarity of continuous participants was higher than those of the inactive participants. The impact of users’ self-presentation topics on their community recognition was significant at the 0.1 level. [Limitations] More research is needed to examine users of other online communities. [Conclusions] “Recollection” is the most popular one among users’ self-presentation topics, which are affected by styles and time. There was a diversity trend for the topics with the development of the community, as well as obvious differences among user groups.

Key wordsSelf-Presentation      User Profile      BERT Topic Clustering      Group Differences      Online Community     
Received: 24 December 2021      Published: 24 August 2022
ZTFLH:  F49 G203  
Fund:Key Projects of Philosophy and Social Sciences Research, Ministry of Education(20JZD024)
Corresponding Authors: Liu Yang,ORCID:0000-0002-9410-1755     E-mail: yang.liu27@whu.edu.cn

Cite this article:

Wu Jiang, Liu Tao, Liu Yang. Mining Online User Profiles and Self-Presentations: Case Study of NetEase Music Community. Data Analysis and Knowledge Discovery, 2022, 6(7): 56-69.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2021.1449     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2022/V6/I7/56

Research Framework of Users’ Self-presentation in Online Community
Number of Comments for Different Style
Number of Comments for Different Length
属性 字段 英文名称
用户资历 注册时间 days
粉丝数 fans
歌单被订阅数 subscribe
用户付费 vip
用户付费等级数 viplevel
用户参与度 用户创建歌单数 playlist
用户创建动态数 event
关注数 follows
Variables Definition
Construction Method of User Profile
days
fans 0.020 8
subscribe 0.015 3
viplevel 0.244 4
Pearson Values Between days and fans, subscribe, viplevel
数值 fans(比例) subscribe(比例)
[0,5) 46.13% 87.21%
[0,10) 67.70% 92.77%
[0,20) 84.19% 95.70%
[0,50) 94.35% 97.62%
[0,100) 97.10% 98.37%
Distribution of fans, subscribe
Clustering Results of BERT and LDA
主题识别 含义 主题 占比 关键词
回忆往事 与用户过往经历有关的故事,如爱情、亲情、学生时代的经历等 Topic 1 3.95% 男孩、女孩、喜欢、朋友、分手
Topic 4 4.40% 小学、学生、同学、学习、音乐
Topic 8 7.26% 对不起、我爱你、放弃、别人
Topic 10 8.69% 感觉、也许、时间、再也无法
Topic 14 5.93% 高三、学校、三年、想起
Topic 16 2.81% 初中、女孩、学生、暑假、脑海
Topic 25 5.10% 变好、姑娘、不够、埋怨、真心
人生感悟 用户抒发的人生感想与体会 Topic 3 4.86% 希望、世界、孤独、放弃、发现
Topic 24 7.43% 思念、淡化、每个人、永远
留言 用户借歌曲评论区留言祈福、设定目标等 Topic 2 3.67% 高考、一年、加油、时间、大学
Topic 6 2.47% 努力、鼓励、考生、可能、转折
Topic 13 7.01% 想要、决定、做梦、目标、向前
歌曲信息 与歌曲相关的信息,如歌手、歌曲推荐等 Topic 18 0.19% 几首歌、谢安琪、欢乐颂、老樊
Topic 20 1.74% 重温、风格、韵律、原曲、吉他
Topic 26 0.67% 声音、纯音、佳作、创作、理解
听后感 用户对歌曲的评价及歌曲给自身带来的感受 Topic 7 5.47% 听到、好听、一首歌、循环
Topic 17 4.55% 好难过、挥之不去、歌单、那句
Topic 23 1.84% 小众、不敢、平静、温馨、怀念
寻求互动 用户表露互动的行为,如求赞等 Topic 15 0.04% 上午好、中午好、祝老板、点赞
Topic 21 0.10% 网恋么、有没有、有人么、陪你
天马行空 用户天马行空的想法与评论,一般与歌曲无太多的关系 Topic 9 0.32% 周游、摇滚、大佬、战袍、兰姨
Topic 11 4.36% 嘿嘿、豪任、摇起来、呵呵
Topic 12 0.03% 难熬、寡呱、打卡、指挥官
Topic 19 8.38% 抵挡、返回、红蜡烛、提醒
Topic 22 2.47% 苏联、红军、多边形、国民
当前状态 用户当下所处的环境或状态等 Topic 5 6.26% 晚上、生日、降温、加班、现在
Topics of Users’ Self-presentation
Distribution of Users’ Self-presentation Topics at Different Year
Distribution of Users’ Self-presentation Topics at Different Style
Proportion of Users’ Self-presentation Topics at Different Style
Distribution of Users’ Self-presentation Topics at Different Time
Proportion of Users’ Self-presentation Topics at Different Time
主题 L1 L2 L3 L4
Topic 18 1.58% 2.09% 2.51% 3.92%
Topic 1 3.23% 4.24% 5.14% 8.09%
Topic 4 3.68% 4.87% 5.87% 9.15%
Topic 8 3.57% 4.74% 5.72% 9.06%
Topic 10 3.51% 4.66% 5.58% 8.74%
Topic 14 3.53% 4.70% 5.68% 8.84%
Topic 16 1.77% 2.36% 2.85% 4.40%
Topic 25 3.74% 4.93% 5.94% 9.32%
Topic 2 1.39% 1.85% 2.29% 3.50%
Topic 6 2.11% 2.81% 3.39% 5.24%
Topic 13 3.70% 4.90% 5.91% 9.25%
Topic 3 3.58% 4.77% 5.71% 8.97%
Topic 24 3.67% 4.89% 5.87% 9.17%
Topic 9 1.11% 1.45% 1.75% 2.77%
Topic 11 3.18% 4.19% 5.06% 8.02%
Topic 22 2.79% 3.70% 4.47% 6.92%
Topic 21 1.67% 2.19% 2.66% 4.17%
Cosine Similarity Between Users’ Qualification and Self-presentation Topics
主题 边缘参与者 初始参与者 持续参与者
Topic 5 2.68% 2.41% 16.02%
Topic 23 2.69% 2.40% 15.55%
Topic 26 2.67% 2.39% 15.54%
Topic 1 2.67% 2.40% 15.63%
Topic 16 1.48% 1.32% 8.59%
Topic 2 1.16% 1.02% 6.84%
Topic 6 1.76% 1.57% 10.22%
Topic 9 0.91% 0.81% 5.36%
Topic 19 2.48% 2.24% 15.04%
Topic 15 0.38% 0.34% 2.26%
Topic 21 1.38% 1.24% 8.07%
Cosine Similarity Between Users’ Participation and Self-presentation Topics
Partial SS df MS F Prob>F
Model 7.22×107 136 531 045 4.9 0.00***
topic 1.41×106 7 201 809 1.9 0.07*
style 3.53×106 11 320 468 2.9 0.00***
year 2.73×107 6 4 543 720 41.8 0.00***
comment_num 2.29×105 1 228 765 2.1 0.15
year×topic 7.13×106 38 187 523 1.7 0.00***
style×topic 9.28×106 73 127 170 1.2 0.15
Residual 1.17×109 10 703 108 820
Covariance Analysis Results
[1] 解学梅, 王丽君. 用户参与对企业新产品开发绩效的影响机理: 基于在线社区视角[J]. 南开管理评论, 2019, 22(3): 91-102.
[1] ( Xie Xuemei, Wang Lijun. A Research on the Impact of User Involvement on New Product Development Performance: Online Community-Based View[J]. Nankai Business Review, 2019, 22(3): 91-102.)
[2] 杨强, 蒋玉石, 周雪, 等. 产品信息会在朋友圈坚持多久——身份认同与经济奖励对社交媒体用户分享意愿及分享时间的影响研究[J]. 南开管理评论, 2021, 24(3): 16-29.
[2] ( Yang Qiang, Jiang Yushi, Zhou Xue, et al. How Long will E-Business Content Stay in WeChat Moments—A Study on the Impact of Identity and Economic Rewards on Social Media Users’ Sharing Willingness and Sharing Time[J]. Nankai Business Review, 2021, 24(3): 16-29.)
[3] Walther J B. Selective Self-Presentation in Computer-Mediated Communication: Hyperpersonal Dimensions of Technology, Language, and Cognition[J]. Computers in Human Behavior, 2007, 23(5): 2538-2557.
doi: 10.1016/j.chb.2006.05.002
[4] 翟本瑞. 从社区、虚拟社区到社交网络: 社会理论的变迁[J]. 兰州大学学报(社会科学版), 2012, 40(5): 51-66.
[4] Zhai Benrui. Evolution of the Social Theory: From Community, Virtual Community to the Social Network[J]. Journal of Lanzhou University(Social Sciences), 2012, 40(5): 51-66.)
[5] 艾媒咨询. 2020年中国在线音乐行业发展专题研究报告[R/OL]. (2021-03-05). [2021-05-05]. https://www.iimedia.cn/c400/77312.html.
[5] ( iiMedia Research. 2020 China Online Music Industry Development Research Report[R/OL]. (2021-03-05). [2021-05-05]. https://www.iimedia.cn/c400/77312.html. )
[6] 林菲. 网易云音乐社交化研究[D]. 济南: 山东师范大学, 2020.
[6] ( Lin Fei. Research on the Socialization of Netease Cloud Music App[D]. Jinan: Shandong Normal University, 2020.)
[7] Rheingold H. The Virtual Community: Finding Commection in a Computerized World[M]. Addison-Wesley Longman Publishing Co., Inc., 1993.
[8] 刘珺. 旅游虚拟社区成员参与动机与旅游决策行为的关系研究[D]. 西安: 西北大学, 2018.
[8] ( Liu Jun. Study on the Relationship Between Participation Motivation of Members in Virtual Tourism Community and Decision-Making Behavior in Tourism[D]. Xi’an: Northwest University, 2018.)
[9] Bagozzi R P, Dholakia U M. Intentional Social Action in Virtual Communities[J]. Journal of Interactive Marketing, 2002, 16(2): 2-21.
[10] 张薇薇, 蒋雪. 在线健康社区用户持续参与动机的演变机理研究[J]. 管理学报, 2020, 17(8): 1245-1253.
[10] ( Zhang Weiwei, Jiang Xue. Research on Motivational Evolution Mechanism of Users’ Continuous Participation in Online Health Communities[J]. Chinese Journal of Management, 2020, 17(8): 1245-1253.)
[11] 吴江, 周露莎. 在线医疗社区中知识共享网络及知识互动行为研究[J]. 情报科学, 2017, 35(3): 144-151.
[11] ( Wu Jiang, Zhou Lusha. The Study of Knowledge Sharing Network and Users’ Knowledge Interaction in Online Health Community[J]. Information Science, 2017, 35(3): 144-151.)
[12] 秦敏, 梁溯. 在线产品创新社区用户识别机制与用户贡献行为研究: 基于亲社会行为理论视角[J]. 南开管理评论, 2017, 20(3): 28-39.
[12] ( Qin Min, Liang Su. Study on User Recognition Mechanism and Contribution Behavior in Online Innovation Communities: Based on Prosocial Behavior Theory[J]. Nankai Business Review, 2017, 20(3): 28-39.)
[13] 王哲, 张鹏翼. 学习小组在线知识协作中的用户角色与行为[J]. 图书情报工作, 2018, 62(7): 77-87.
doi: 10.13266/j.issn.0252-3116.2018.07.009
[13] ( Wang Zhe, Zhang Pengyi. User Roles and Behaviors in Learning Groups’ Online Knowledge Collaboration[J]. Library and Information Service, 2018, 62(7): 77-87.)
doi: 10.13266/j.issn.0252-3116.2018.07.009
[14] 赵欣, 王倩雯, 张长征. 从知识搜寻者到知识贡献者——专业虚拟社区用户角色转变的机理研究[J]. 情报科学, 2017, 35(10): 18-22.
[14] ( Zhao Xin, Wang Qianwen, Zhang Changzheng. From Knowledge Seeker to Knowledge Contributor: A Research on the Transition of Professional Virtual Community User[J]. Information Science, 2017, 35(10): 18-22.)
[15] Liu Z L, Min Q F, Zhai Q G, et al. Self-Disclosure in Chinese Micro-Blogging: A Social Exchange Theory Perspective[J]. Information & Management, 2016, 53(1): 53-63.
doi: 10.1016/j.im.2015.08.006
[16] Zhao S Y, Grasmuck S, Martin J. Identity Construction on Facebook: Digital Empowerment in Anchored Relationships[J]. Computers in Human Behavior, 2008, 24(5): 1816-1836.
doi: 10.1016/j.chb.2008.02.012
[17] Jones E E, Pittman T S. Toward a General Theory of Strategic Self-Presentation[J]. Psychological Perspectives on the Self, 1982, 1: 231-262.
[18] Baumeister R F. A Self-Presentational View of Social Phenomena[J]. Psychological Bulletin, 1982, 91(1): 3-26.
doi: 10.1037/0033-2909.91.1.3
[19] Schlenker B R. The Self Concept, Social Identity, and Interpersonal Relations[M]. Monterey, CA: Brooks/Cole, 1980.
[20] Wang S S, Stefanone M A. Showing off? Human Mobility and the Interplay of Traits, Self-Disclosure, and Facebook Check-ins[J]. Social Science Computer Review, 2013, 31(4): 437-457.
doi: 10.1177/0894439313481424
[21] Gibbs J L, Ellison N B, Heino R D. Self-Presentation in Online Personals: The Role of Anticipated Future Interaction, Self-Disclosure, and Perceived Success in Internet Dating[J]. Communication Research, 2006, 33(2): 152-177.
doi: 10.1177/0093650205285368
[22] Lee K T, Noh M J, Koo D M. Lonely People are No Longer Lonely on Social Networking Sites: The Mediating Role of Self-Disclosure and Social Support[J]. Cyberpsychology, Behavior and Social Networking, 2013, 16(6): 413-418.
doi: 10.1089/cyber.2012.0553
[23] Park N, Jin B, Jin S A. Effects of Self-Disclosure on Relational Intimacy in Facebook[J]. Computers in Human Behavior, 2011, 27(5): 1974-1983.
doi: 10.1016/j.chb.2011.05.004
[24] Xie X C, Wang X C, Zhao F Q, et al. Online Real-Self Presentation and Depression Among Chinese Teens: Mediating Role of Social Support and Moderating Role of Dispositional Optimism[J]. Child Indicators Research, 2018, 11(5): 1531-1544.
doi: 10.1007/s12187-017-9484-5
[25] 刘容, 杨佳伟, 董晓松, 等. 社会化商务情境下商家自我呈现对顾客信任的影响研究[J]. 管理学报, 2021, 18(3): 418-425.
[25] ( Liu Rong, Yang Jiawei, Dong Xiaosong, et al. The Influence of Merchants’ Self-Presentation on Customer Trust in the Context of Social Commerce[J]. Chinese Journal of Management, 2021, 18(3): 418-425.)
[26] Kim J, Lee J E R. The Facebook Paths to Happiness: Effects of the Number of Facebook Friends and Self-Presentation on Subjective Well-Being[J]. Cyberpsychology, Behavior and Social Networking, 2011, 14(6): 359-364.
doi: 10.1089/cyber.2010.0374
[27] 邬心云. 日志式个人博客的自我呈现心理研究[D]. 武汉: 华中科技大学, 2012.
[27] ( Wu Xinyun. The Psychoanalysis of Self-Presentation on Personal Journal Blog[D]. Wuhan: Huazhong University of Science and Technology, 2012.)
[28] Bareket-Bojmel L, Moran S, Shahar G. Strategic Self-Presentation on Facebook: Personal Motives and Audience Response to Online Behavior[J]. Computers in Human Behavior, 2016, 55: 788-795.
doi: 10.1016/j.chb.2015.10.033
[29] Leary M R. Self-Presentation: Impression Management and Interpersonal Behavior[M]. Routledge, 2019.
[30] Bouvier G. How Facebook Users Select Identity Categories for Self-Presentation[J]. Journal of Multicultural Discourses, 2012, 7(1): 37-57.
doi: 10.1080/17447143.2011.652781
[31] Cooper A. The Inmates are Running the Asylum[M]. Sams, 2006.
[32] 王凌霄, 沈卓, 李艳. 社会化问答社区用户画像构建[J]. 情报理论与实践, 2018, 41(1): 129-134.
[32] ( Wang Lingxiao, Shen Zhuo, Li Yan. User Profiling of Social Q & A Community[J]. Information Studies: Theory & Application, 2018, 41(1): 129-134.)
[33] 刘学之, 杨泽宇, 沈凤武, 等. 基于S型曲线的指标非线性标准化研究[J]. 统计与信息论坛, 2018, 33(2): 17-21.
[33] ( Liu Xuezhi, Yang Zeyu, Shen Fengwu, et al. Research on the Index Non-Linear Standardization Based on S Type Curve[J]. Statistics & Information Forum, 2018, 33(2): 17-21.)
[34] 俞立平, 阮先鹏, 吴贤豪, 等. 基于Sigmoid函数的文献计量指标评价标准研究[J]. 情报杂志, 2020, 39(9): 176-182.
[34] ( Yu Liping, Ruan Xianpeng, Wu Xianhao, et al. A Study on Evaluation Criteria of Bibliometric Indicators Based on Sigmoid Function[J]. Journal of Intelligence, 2020, 39(9): 176-182.)
[35] 盛姝, 黄奇, 郑姝雅, 等. 在线健康社区中用户画像及主题特征分布下信息需求研究——以医享网结直肠癌圈数据为例[J]. 情报学报, 2021, 40(3): 308-320.
[35] ( Sheng Shu, Huang Qi, Zheng Shuya, et al. Study of User Information Requirements in an Online Health Community Based on the Distribution of User Profile and Theme Features: Taking Colorectal Cancer Data from Yi Xiang as an Example[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(3): 308-320.)
[36] 吴江, 周露莎, 刘冠君, 等. 基于LDA的可穿戴设备在线评论主题挖掘研究[J]. 信息资源管理学报, 2017, 7(3): 24-33.
doi: 10.4018/irmj.1994040103
[36] ( Wu Jiang, Zhou Lusha, Liu Guanjun, et al. The Study of Topic Mining on Online Reviews of Wearable Devices Based on LDA Model[J]. Journal of Information Resources Management, 2017, 7(3): 24-33.)
doi: 10.4018/irmj.1994040103
[37] 王婷婷, 韩满, 王宇. LDA模型的优化及其主题数量选择研究——以科技文献为例[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[37] ( Wang Tingting, Han Man, Wang Yu. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 29-40.)
[38] 王思丽, 杨恒, 祝忠明, 等. 基于BERT的领域本体分类关系自动识别研究[J]. 情报科学, 2021, 39(7): 75-82.
[38] ( Wang Sili, Yang Heng, Zhu Zhongming, et al. Research on Automatic Identification of Domain Ontology Classification Relations Based on BERT[J]. Information Science, 2021, 39(7): 75-82.)
[39] Lane H, Howard C, Hapke M H. Natural Language Processing in Action[M]. Manning, 2019.
[40] Do V H, Canzar S. A Generalization of T-SNE and UMAP to Single-Cell Multimodal Omics[J]. Genome Biology, 2021, 22(1): 130.
doi: 10.1186/s13059-021-02356-5
[41] 王磊, 黄广君. 结合概念语义空间的语义扩展技术研究[J]. 计算机工程与应用, 2012, 48(35): 106-109.
[41] ( Wang Lei, Huang Guangjun. Research of Semantic Query Expansion Related to Concept Semantic Space[J]. Computer Engineering and Applications, 2012, 48(35): 106-109.)
[42] Röder M, Both A, Hinneburg A. Exploring the Space of Topic Coherence Measures[C]// Proceedings of the 8th ACM International Conference on Web Search and Data Mining. 2015: 399-408.
[43] 张兆阳, 王君领, 黄佳妮, 等. 重大突发事件期间微博主题与用户行为的关联演化研究[J]. 信息资源管理学报, 2021, 11(2): 28-38.
doi: 10.4018/irmj.1998070103
[43] ( Zhang Zhaoyang, Wang Junling, Huang Jiani, et al. Selection of Users’ Behaviors Towards Different Topics in Micro-Blog During the Major Emergency[J]. Journal of Information Resources Management, 2021, 11(2): 28-38.)
doi: 10.4018/irmj.1998070103
[44] Rousseeuw P J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
doi: 10.1016/0377-0427(87)90125-7
[45] 林燕霞, 谢湘生. 基于社会认同理论的微博群体用户画像[J]. 情报理论与实践, 2018, 41(3): 142-148.
[45] ( Lin Yanxia, Xie Xiangsheng. User Portrait of Diversified Groups in Micro-Blog Based on Social Identity Theory[J]. Information Studies: Theory & Application, 2018, 41(3): 142-148.)
[1] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[2] Jing Xie,Li Qian,Hongbo Shi,Beibei Kong,Jiying Hu. Designing Framework for Precise Service of Scholarly Big Data[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
[3] Chen Guo,Xiao Lu. Linking Knowledge Elements from Online Community[J]. 数据分析与知识发现, 2017, 1(11): 75-83.
[4] Zhao Yuxiang,Peng Xixian. Media as a Community? Literature Based Topic Evaluation in Information Systems Discipline[J]. 现代图书情报技术, 2014, 30(1): 56-65.
[5] Shen Wang, Guo Jia, Li He. Research on Information Quality and Credibility Evaluation in Online Community——Based on User Perspective[J]. 现代图书情报技术, 2013, 29(1): 69-74.
[6] Zhang Yunzhong, Yang Meng, Xu Baoxiang. Research on FCA-based User Profile Mining for Folksonomy[J]. 现代图书情报技术, 2011, 27(6): 72-78.
[7] Ku Liping. Model of Non-user-A Methodology for Information System Performance[J]. 现代图书情报技术, 2011, 27(1): 46-51.
[8] Ku Liping. Review of Personalized Interaction Design[J]. 现代图书情报技术, 2010, 26(11): 10-16.
[9] Wang Cuiying. Study on Folksonomies-based User Profiles Mining[J]. 现代图书情报技术, 2009, 25(6): 37-43.
[10] Li Shuqing. The Personalized Product Recommendation Method Based on Weighted XML Model[J]. 现代图书情报技术, 2009, 25(4): 64-69.
[11] Zhang Yulian,Wang Quan. User Profile Mining of Combining Web Behavior and Content Analysis[J]. 现代图书情报技术, 2007, 2(6): 52-55.
[12] Cui Jianhai,Cheng Ni,Wang Jun. Overview of Technologies of Personalized Web Information Retrieval[J]. 现代图书情报技术, 2005, 21(9): 45-49.
[13] Huang Xiaobin,Xia Mingchun,Ye Chuxuan. A Study on Filtering System Based on Digital Library[J]. 现代图书情报技术, 2004, 20(6): 6-10.
[14] Mei Haiyan. Research on Information Filtering[J]. 现代图书情报技术, 2002, 18(2): 44-47.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn