Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (10): 142-150    DOI: 10.11925/infotech.2096-3467.2022.0067
Current Issue | Archive | Adv Search |
Analyzing Public Opinion on Three-Child-Policy with Sentiment Classification and Keyword Extraction
Meng Fansi1,Zhong Han1(),Shi Shuicai2,Xie Zekun1
1School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China
2TRS Information Technology Co., Ltd., Beijing 100101, China
Download: PDF (1364 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper studies the public opinion on the three-child-policy in different Chinese provinces. [Context] Existing research on this issue addresses public opinion from the Web as a whole, and ignores the demands or concerns from individual province. These studies’ research methods are rather simple with single data source. [Methods] Firstly, we analyzed the public opinion on three-child-policy with time series method from the statistical perspective. Then, we examined their sentiments with the SVM model, and extracted keywords from the negative opinion with the CRF model. Third, we created word clouds for these keywords. Finally, we conducted research on these public opinion in different provinces and generated word clouds for them. We also examined the ties between political or economic statistics and the negative key words from different provinces. [Results] The three-child-policy was more popular than other policies during the same period. The public opinion was dominated by neutral sentiments (60.56%), followed by the positive (35.15%) and the negative ones (4.29%). Public concerns in different provinces were different and correlated to the political, economic and ecological factors. [Conclusions] Different provinces should adopt customized public opinion guidance to support the three-child-policy, which will address people’s concerns more effectively.

Key wordsThree-Child      Public Opinion      SVM      CRF     
Received: 23 January 2022      Published: 16 November 2022
ZTFLH:  C913 C923  
Fund:National Social Science Fund of China(20AZD114);Soft Science Theory Research Program of the Ministry of Public Security(2021LL39)
Corresponding Authors: Zhong Han     E-mail: zhonghan@ppsuc.edu.cn

Cite this article:

Meng Fansi,Zhong Han,Shi Shuicai,Xie Zekun. Analyzing Public Opinion on Three-Child-Policy with Sentiment Classification and Keyword Extraction. Data Analysis and Knowledge Discovery, 2022, 6(10): 142-150.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.0067     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2022/V6/I10/142

The Amount of Different Public Opinions
Public Opinion on Three Children
Public Opinion on Women’s Rights
算法 标签 精确率 召回率 F1值 支持度 准确率
NB 0(负面) 0.74 0.83 0.78 155 0.858
1(正面) 0.92 0.87 0.89 145
LSTM 0(负面) 0.79 0.61 0.69 155 0.830
1(正面) 0.84 0.93 0.88 345
SVM 0(负面) 0.82 0.69 0.75 155 0.856
1(正面) 0.87 0.93 0.90 345
XGBoost 0(负面) 0.74 0.81 0.77 155 0.852
1(正面) 0.91 0.87 0.89 345
Algorithm Performance
Word Cloud of Three-Child Policy
所发布政策 高频词
全面二孩政策 看孩子劳累、二孩幸福、二孩教育、二孩家庭接纳、老人带孩子
三孩政策 性别平等、配套措施、生育权、婚嫁陋习、女性压力、生育负担
Comparison of the Theme of Negative Public Opinion
Popularity of the Three-Child Policy in Different Provinces
省份 北京 广东 浙江 山东 四川
TOP1 年轻人 朱列玉 微信公众号 山东 奖励
TOP2 北京 小孩 篡改 淄博 复读
TOP3 管培生 幼儿教育 新闻 三胎 家长
TOP4 生孩子 女职工 截图 考生 四川
TOP5 怀孕 子女 三个子女 山东高考 成都
TOP6 劳动者 照顾 县城 调查 学生
TOP7 投资 延长产假 房价 多地 辅助生殖
TOP8 hr 负担 丽水市 有望 医学
TOP9 躺平 照看 丽水 调研 小孩
TOP10 资本家 全国人大代表 公安局 会议 生三孩
省份 河南 江西 湖北 陕西 重庆
TOP1 高三 研判 受访者 托育 养老
TOP2 房间 会议 公共服务 西安 复读
TOP3 笔记 江西 儿童 青年 福祉
TOP4 女士 贷款 放开 调查 豪华
TOP5 拍下 部署 优惠 人口老龄化 人口老龄化
TOP6 来源 调研 出行 应对 三胎
TOP7 学习 多地 时代 调研 重庆
TOP8 学生 高于 景区 母婴 座椅
TOP9 妈妈 全市 调查 suv 老龄化
TOP10 理想 银行 应对 会议 应对
Keywords of Public Opinion in Different Provinces
[1] 第六次人口普查委员会. 2010年第六次全国人口普查主要数据公报(第一号)[R]. 北京: 第六次人口普查委员会, 2010.
[1] (The Sixth Census Commission. Major Figures of the 2010 National Population Census(No. 1)[R]. Beijing: The Sixth Census Commission, 2010.)
[2] 风笑天. 三孩生育政策与新型生育文化建设[J]. 新疆师范大学学报: 哲学社会科学版, 2022, 43(1): 98-105.
[2] (Feng Xiaotian. The Three-Child Policy and the Construction of the New Fertility Culture[J]. Journal of Xinjiang Normal University: Edition of Philosophy and Social Sciences, 2022, 43(1): 98-105.)
[3] 中共中央国务院. 关于优化生育政策促进人口长期均衡发展的决定[R]. 北京: 中共中央国务院, 2021.
[3] (CPC Central Committee and State Council. Decision on Optimizing Birth Policy to Promote Long-Term Balanced Development of Population[R]. Beijing: CPC Central Committee and State Council, 2021.)
[4] 刘毅. 网络舆情研究概论[M]. 天津: 天津人民出版社, 2007: 51.
[4] Liu Yi. Introduction to Network Public Opinion Research[M]. Tianjin: Tianjin Renmin Publishing House, 2007: 51.)
[5] 李小波. 涉警舆情结构及其演化机理分析[J]. 公安学研究, 2020, 3(6): 46-66.
[5] (Li Xiaobo. The Structure and Evolution Mechanism of Police-Related Public Opinion[J]. Journal of Public Security Science, 2020, 3(6): 46-66.)
[6] 王来华, 冯希莹. 舆情概念认识中的两个基本问题[J]. 天津社会科学, 2012, 3(6): 73-76.
[6] (Wang Laihua, Feng Xiying. Two Basic Problems in Public Opinion Concept Understanding[J]. Tianjin Social Sciences, 2012, 3(6): 73-76.)
[7] 孙倬, 赵红, 王宗水. 网络舆情研究进展及其主题关联关系路径分析[J]. 图书情报工作, 2021, 65(7): 143-154.
doi: 10.13266/j.issn.0252-3116.2021.07.014
[7] (Sun Zhuo, Zhao Hong, Wang Zongshui. Analysis on the Association and Evolution Path of Internet Public Opinion[J]. Library and Information Service, 2021, 65(7): 143-154.)
doi: 10.13266/j.issn.0252-3116.2021.07.014
[8] 叶金珠, 佘廉. 网络突发事件蔓延机理研究[J]. 情报杂志, 2012, 31(3): 1-5.
[8] (Ye Jinzhu, She Lian. The Mechanism of Internet Emergency Spread[J]. Journal of Intelligence, 2012, 31(3): 1-5.)
[9] 黄微, 卢国强, 赵旭. 基于知识图谱的微博主题演变路径研究[J]. 情报理论与实践, 2022, 45(3): 173-181.
[9] (Huang Wei, Lu Guoqiang, Zhao Xu. Research on the Evolution Path of Microblog Topic Based on Knowledge Graph[J]. Information Studies: Theory & Application, 2022, 45(3): 173-181.)
[10] 赵艺, 李平. 突发疫情环境下网络舆情传播趋势预测及社会保障应急机制研究[J]. 情报科学, 2021, 39(11): 45-50.
[10] (Zhao Yi, Li Ping. The Trend Forecast of Internet Public Opinion Dissemination and Social Security Emergency Mechanism in the Emergent Epidemic[J]. Information Science, 2021, 39(11): 45-50.)
[11] 林玲, 陈福集, 谢加良, 等. 基于改进灰狼优化支持向量回归的网络舆情预测[J]. 系统工程理论与实践, 2022, 42(2): 487-498.
doi: 10.12011/SETP2020-1500
[11] (Lin Ling, Chen Fuji, Xie Jialiang, et al. Prediction of Network Public Opinion Based on Improved Grey Wolf Optimized Support Vector Machine Regression[J]. Systems Engineering-Theory & Practice, 2022, 42(2): 487-498.)
doi: 10.12011/SETP2020-1500
[12] 金城, 吴文渊, 陈柏儒, 等. 面向不同用户群体的社交媒体台风舆情演化分析及对比研究[J]. 地球信息科学学报, 2021, 23(12): 2174-2186.
doi: 10.12082/dqxxkx.2021.210065
[12] (Jin Cheng, Wu Wenyuan, Chen Bairu, et al. Analysis and Comparative Study of the Evolution of Public Opinion on Social Media During Typhoon for Different User Groups[J]. Journal of Geo-Information Science, 2021, 23(12): 2174-2186.)
doi: 10.12082/dqxxkx.2021.210065
[13] 韩鹏宇, 余正涛, 高盛祥, 等. 案件要素句子关联图卷积的案件舆情摘要方法[J]. 软件学报, 2021, 32(12): 3829-3838.
[13] (Han Pengyu, Yu Zhengtao, Gao Shengxiang, et al. Case-Related Public Opinion Summarization Method Based on Graph Convolution of Sentence Association Graph with Case Elements[J]. Journal of Software, 2021, 32(12): 3829-3838.)
[14] 江志英, 李宇洋, 李佳桐, 等. 基于层次分析的长短记忆网络(AHP-LSTM)的食品安全网络舆情预警模型[J]. 北京化工大学学报(自然科学版), 2021, 48(6): 98-107.
[14] (Jiang Zhiying, Li Yuyang, Li Jiatong, et al. An Early-Warning Model Based on an Analytic Hierarchy Process-Long Short-Term Memory Network(AHP-LSTM) for Food Safety Network Public Opinion[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(6): 98-107.)
[15] 风笑天. “二孩”还是“三孩”, “允许”还是“提倡”?——国家生育政策调整的目标解读与认识转变[J]. 江苏行政学院学报, 2021(5): 51-59.
[15] (Feng Xiaotian. “Two Children” or “Three Children, “Allowing” or “Advocating”: Interpretation of the Policy Objectives of the National Family Planning Policy and Awareness Shift[J]. The Journal of Jiangsu Administration Institute, 2021(5): 51-59.)
[16] 风笑天. 三孩生育意愿预测须防范二孩研究偏差[J]. 探索与争鸣, 2021(11): 80-89.
[16] (Feng Xiaotian. The Prediction of Three-Child Fertility Intention Must Avoid the Deviation of Second-Child Research[J]. Exploration and Free Views, 2021(11): 80-89.)
[17] 杨燕绥, 于淼. 三孩政策目标与护养融合体系建设[J]. 行政管理改革, 2021(9): 26-34.
[17] (Yang Yansui, Yu Miao. The Goal of Three-Child Policy and Medical Care and Nursing Integration System Construction[J]. Administration Reform, 2021(9): 26-34.)
[18] 陈卫. 中国的低生育率与三孩政策——基于第七次全国人口普查数据的分析[J]. 人口与经济, 2021(5): 25-35.
[18] (Chen Wei. China’s Low Fertility and the Three-Child Policy: Analysis Based on the Data of the Seventh National Census[J]. Population & Economics, 2021(5): 25-35.)
[19] 李丹, 李丽萍, 李丹. 三孩政策出台的舆情效应及启示——基于NLP的网络大数据分析[J]. 中国青年研究, 2021(10): 46-53.
[19] (Li Dan, Li Liping, Li Dan. The Public Opinion Effect and Enlightenment of the Three-Child Policy Network Big Data Analysis Based on NLP[J]. China Youth Study, 2021(10): 46-53.)
[20] Vapnik V, Levin E, Cun Y L. Measuring the VC-Dimension of a Learning Machine[J]. Neural Computation, 1994, 6(5): 851-876.
doi: 10.1162/neco.1994.6.5.851
[21] 胡少虎, 张颖怡, 章成志. 关键词提取研究综述[J]. 数据分析与知识发现, 2021, 5(3): 45-59.
[21] (Hu Shaohu, Zhang Yingyi, Zhang Chengzhi. Review of Keyword Extraction Studies[J]. Data Analysis and Knowledge Discovery, 2021, 5(3): 45-59.)
[22] 韩运荣, 明山, 何睿敏. 生育政策调整背景下的“女性与生育”微博舆情研究[J]. 中国新闻传播研究, 2020(1): 124-141.
[22] (Han Yunrong, Ming Shan, He Ruimin. Public Sentiment Analysis of “Women and Birth” on Weibo Against the Backdrop of Policy Change[J]. China Journalism and Communication Journal, 2020(1): 124-141.)
[23] 第七次人口普查委员会. 2021年第七次全国人口普查主要数据公报(第一号)[R]. 北京: 第七次人口普查委员会, 2020.
[23] (The Seventh Census Commission. Major Figures of the 2021 National Population Census(No. 1)[R]. Beijing: The Seventh Census Commission, 2020.)
[24] 中国国家统计局. 中国统计年鉴[R]. 北京: 国家统计局, 2020.
[24] (National Bureau of Statistics of China. China Statistical Yearbook[R]. Beijing: National Bureau of Statistics, 2020.)
[1] Li Chuan, Zhu Xuefang, Fu Ziyuan. Early-warning Model for Undergraduate Public Opinion with Dynamic Evolution[J]. 数据分析与知识发现, 2022, 6(8): 97-109.
[2] Hu Jiming, Qian Wei, Wen Peng, Lv Xiaoguang. Text Semantic Representation with Structure-Function and Entity Recognition: Case Study of Medical Records[J]. 数据分析与知识发现, 2022, 6(8): 110-121.
[3] Wang Nan, Li Hairong, Tan Shuru. Predicting Public Opinion Reversal Based on Evolution Analysis of Events and Improved KE-SMOTE Algorithm[J]. 数据分析与知识发现, 2022, 6(2/3): 396-408.
[4] Fan Tao,Wang Hao,Wu Peng. Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[5] Wang Hao, Lin Kerou, Meng Zhen, Li Xinlei. Identifying Multi-Type Entities in Legal Judgments with Text Representation and Feature Generation[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[6] Yu Xuehan, He Lin, Xu Jian. Extracting Events from Ancient Books Based on RoBERTa-CRF[J]. 数据分析与知识发现, 2021, 5(7): 26-35.
[7] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[8] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[9] Wang Nan,Li Hairong,Tan Shuru. Predicting of Public Opinion Reversal with Improved SMOTE Algorithm and Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[10] Hu Haotian,Ji Jinfeng,Wang Dongbo,Deng Sanhong. An Integrated Platform for Food Safety Incident Entities Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(3): 12-24.
[11] Shen Wang, Li Shiyu, Liu Jiayu, Li He. Optimizing Quality Evaluation for Answers of Q&A Community[J]. 数据分析与知识发现, 2021, 5(2): 83-93.
[12] Xu Yabin, Sun Qiutian. Identifying Leaders and Dissemination Paths of Public Opinion[J]. 数据分析与知识发现, 2021, 5(2): 32-42.
[13] Cheng Tiejun, Wang Man, Huang Baofeng, Feng Lanping. Predicting Online Public Opinion in Emergencies Based on CEEMDAN-BP[J]. 数据分析与知识发现, 2021, 5(11): 59-67.
[14] Shao Qi,Mu Dongmei,Wang Ping,Jin Chunyan. Identifying Subjects of Online Opinion from Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(9): 68-80.
[15] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn