|
|
Automatically Extracting Technical Indicators from U.S. Commerce Control List |
Yuan Yue,Pang Na,Li Guangjian( ) |
Department of Information Management, Peking University, Beijing 100871, China |
|
|
Abstract [Objective] This paper proposes a method to automatically extract technical indicators from the “U.S. Commerce Control List”, aiming to better understand technical details of the listed products and the U.S. export control policies. [Methods] We represented the technical indicators as their objects, names, relationships, and values. Then, we proposed an automated model to extract technical indicators, and stored them as structured four-element records. [Results] The proposed method effectively extract the technical indicators from the “Commerce Control List” in a non-supervised manner. The precision and F1 values of our method reached 87.34% and 86.52%, respectively. [Limitations] The proposed extraction method is mainly for the text of the “Commerce Control List”, and more research is needed to examine it with other corpus. [Conclusions] This proposed method could effectively extract technical indicators from “Commerce Control List” of the United States.
|
Received: 03 June 2022
Published: 09 November 2022
|
|
Fund:National Social Science Fund of China(15ZDB129) |
Corresponding Authors:
Li Guangjian,ORCID:0000-0002-2897-6246,E-mail:ligj@pku.edu.cn。
|
[1] |
Commerce Control List (CCL)[EB/OL]. [2022-07-05]. https://www.bis.doc.gov/index.php/regulations/commerce-control-list-ccl.
|
[2] |
郑彦宁, 邓擘. 信息抽取技术在情报学中的应用分析[J]. 情报理论与实践, 2008, 31(5): 769-772.
|
[2] |
( Zheng Yanning, Deng Bo. Analysis of the Application of Information Extraction Technology in Information Science[J]. Information Studies: Theory & Application, 2008, 31(5): 769-772.)
|
[3] |
吴超, 郑彦宁, 化柏林. 数值信息抽取研究进展综述[J]. 中国图书馆学报, 2014, 40(2): 107-119.
|
[3] |
( Wu Chao, Zheng Yanning, Hua Bolin. Numerical Information Extraction: A Review of Research[J]. Journal of Library Science in China, 2014, 40(2): 107-119.)
|
[4] |
李广建, 王锴, 张庆芝. 基于多源数据的美国出口管制分析框架及其实证研究[J]. 数据分析与知识发现, 2020, 4(9): 26-40.
|
[4] |
( Li Guangjian, Wang Kai, Zhang Qingzhi. Analysis Framework Based on Multi-Source Data for US Export Control: An Empirical Study[J]. Data Analysis and Knowledge Discovery, 2020, 4(9): 26-40.)
|
[5] |
宋锐, 林鸿飞, 常富洋. 中文比较句识别及比较关系抽取[J]. 中文信息学报, 2009, 23(2): 102-107.
|
[5] |
( Song Rui, Lin Hongfei, Chang Fuyang. Chinese Comparative Sentences Identification and Comparative Relations Extraction[J]. Journal of Chinese Information Processing, 2009, 23(2): 102-107.)
|
[6] |
Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical Information Extraction Applications: A Literature Review[J]. Journal of Biomedical Informatics, 2018, 77: 34-49.
doi: S1532-0464(17)30256-3
pmid: 29162496
|
[7] |
Zhou P, El-Gohary N. Ontology-Based Automated Information Extraction from Building Energy Conservation Codes[J]. Automation in Construction, 2017, 74: 103-117.
doi: 10.1016/j.autcon.2016.09.004
|
[8] |
Wanichayapong N, Pruthipunyaskul W, Pattara-Atikom W, et al. Social-Based Traffic Information Extraction and Classification[C]// Proceedings of 2011 11th International Conference on ITS Telecommunications. 2011: 107-112.
|
[9] |
唐晓波, 谭明亮, 胡潇然, 等. 面向金融决策支持的知识获取研究综述[J]. 信息资源管理学报, 2020, 10(3): 27-35.
|
[9] |
( Tang Xiaobo, Tan Mingliang, Hu Xiaoran, et al. A Review of Financial Decision-Making Support-Oriented Knowledge Acquisition[J]. Journal of Information Resource Management, 2020, 10(3): 27-35.)
|
[10] |
饶齐, 王裴岩, 张桂平. 面向中文专利SAO结构抽取的文本特征比较研究[J]. 北京大学学报(自然科学版), 2015, 51(2): 349-356.
|
[10] |
( Rao Qi, Wang Peiyan, Zhang Guiping. Text Feature Analysis on SAO Structure Extraction from Chinese Patent Literatures[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(2): 349-356.)
|
[11] |
杜文韬, 刘培玉, 费绍栋, 等. 基于关联特征词表的中文比较句识别[J]. 计算机应用, 2013, 33(6): 1591-1594.
doi: 10.3724/SP.J.1087.2013.01591
|
[11] |
( Du Wentao, Liu Peiyu, Fei Shaodong, et al. Chinese Comparative Sentences Recognition Based on Associated Feature Vocabulary[J]. Journal of Computer Applications, 2013, 33(6): 1591-1594.)
doi: 10.3724/SP.J.1087.2013.01591
|
[12] |
Hu X, Wu J, He J R. Textual Indicator Extraction from Aviation Accident Reports[C]// Proceedings of AIAA Aviation 2019 Forum. 2019. DOI: 10.2514/6.2019-2939.
doi: 10.2514/6.2019-2939
|
[13] |
李春杰, 马建玲, 主雪梅. 数值信息抽取研究概述及应用分析[J]. 情报科学, 2019, 37(2): 40-45, 124.
|
[13] |
( Li Chunjie, Ma Jianling, Zhu Xuemei. A Overview of Numerical Information Extraction Research and Application Analysis[J]. Information Science, 2019, 37(2): 40-45, 124.)
|
[14] |
谢维佳, 王映涛. 电子病历系统中检验数据信息抽取研究[J]. 中国数字医学, 2015, 10(3): 69-70, 96.
|
[14] |
( Xie Weijia, Wang Yingtao. Research on the Extraction of Laboratory Data and Information in the Electronic Medical Records System[J]. China Digital Medicine, 2015, 10(3): 69-70, 96.)
|
[15] |
郭少卿, 乐小虬. 科技论文中数值指标实际取值识别[J]. 数据分析与知识发现, 2018, 2(1): 21-28.
|
[15] |
( Guo Shaoqing, Le Xiaoqiu. Identifying Actual Value of Numerical Indicator from Scientific Paper[J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 21-28.)
|
[16] |
吴胜, 刘茂福, 胡慧君, 等. 中文文本中实体数值型关系无监督抽取方法[J]. 武汉大学学报(理学版), 2016, 62(6): 552-560.
|
[16] |
Wu Sheng, Liu Maofu, Hu Huijun, et al. Unsupervised Extraction of Attribute-Value Entity Relation from Chinese Texts[J]. Journal of Wuhan University(Natural Science Edition), 2016, 62(6): 552-560.)
|
[17] |
时公泽, 王浩畅. 基于双模式的产品指标本体概念抽取[J]. 信息技术, 2017(3): 26-29, 33.
|
[17] |
( Shi Gongze, Wang Haochang. Ontology Concept Extraction for Product Indicators Based on Double Strategy Combination[J]. Information Technology, 2017(3): 26-29, 33.)
|
[18] |
Kim S, Jeong M, Lee G G. A Local Tree Alignment Approach to Relation Extraction of Multiple Arguments[J]. Information Processing & Management, 2011, 47(4): 593-605.
doi: 10.1016/j.ipm.2010.12.002
|
[19] |
ibiblio. A Dictionary of Units of Measurement[EB/OL]. [2022-05-18]. http://www.ibiblio.org/units.
|
[20] |
15 CFR Supplement No. 1 to Part 774 - The Commerce Control List[EB/OL]. [2022-07-05]. https://www.govinfo.gov/content/pkg/CFR-2020-title15-vol2/pdf/CFR-2020-title15-vol2-part774-appNo-.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|