Please wait a minute...
Data Analysis and Knowledge Discovery  2023, Vol. 7 Issue (5): 92-104    DOI: 10.11925/infotech.2096-3467.2022.0602
Current Issue | Archive | Adv Search |
Linguistic Knowledge-Enhanced Self-Supervised Graph Convolutional Network for Event Relation Extraction
Xu Kang,Yu Shengnan,Chen Lei(),Wang Chuandong
School of Computer Science, Software and Network Security, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Download: PDF (1002 KB)   HTML ( 8
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper proposes a Linguistic Knowledge-enhanced Self-Supervised Graph Convolutional Network (LKS-GCN) model, aiming to improve the existing method for event relation extraction. [Methods] First, we used the BERT model to encode the input texts, and learned the syntactic relationships between words with graph convolutional network to enhance text representations. Then, we introduced a multi-head attention mechanism to distinguish different dependency features and utilized segment-level max pooling operation to extract structural information. Next, the pooled results of multiple segments were combined as the relation features of event pairs. We conducted adaptive clustering based on the relation representation features and generated pseudo-labels as the self-supervision information. Finally, we optimized event relation features through iterative self-supervised training. [Results] We evaluated the new model on TACRED and FewRel datasets, which made the B3-F1 2.1% and 1.2% higher than the best baseline methods. [Limitations] The model treated the syntactic dependency tree as an undirected graph and did not consider the edges’ direction and dependency edges’ label information. [Conclusions] The LKS-GCN model could effectively enhance text representation and provide a self-supervised learning framework for event relation extraction with limited labeled data.

Key wordsEvent Relation Extraction      BERT      Self-Supervised Model      Graph Convolutional Network      Multi-Head Attention     
Received: 12 June 2022      Published: 09 November 2022
ZTFLH:  TP391  
Fund:National Natural Science Foundation of China(62202240);National Natural Science Foundation of China(61872190);Talent Project of Nanjing University of Posts and Telecommunications(NY218118);Talent Project of Nanjing University of Posts and Telecommunications(NY219104)
Corresponding Authors: Chen Lei,ORCID:0000-0002-6071-8888,E-mail:chenlei@njupt.edu.cn。   

Cite this article:

Xu Kang, Yu Shengnan, Chen Lei, Wang Chuandong. Linguistic Knowledge-Enhanced Self-Supervised Graph Convolutional Network for Event Relation Extraction. Data Analysis and Knowledge Discovery, 2023, 7(5): 92-104.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.0602     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2023/V7/I5/92

LKS-GCN Model
An Example of the Dependency Parsing Tree
参数名称 参数意义 参数值
emb_dim 词向量嵌入维度 768
max_length 文本最大长度 128
pos_dim 词性向量嵌入维度 30
hidden layer units 隐藏层单元数 300
layer of gcn 图卷积层数 3
number of head head数目 2
dropout 丢失率 0.5
activation function 激活函数 ReLU
optimizer 优化器 Adam
learning_rate 学习率 0.000 1
batch_size 批训练样本数 100
epoch 训练轮数 10
Hyperparameters Setting
数据集 模型 B3 V-measure ARI
Prec. Rec. F1 Hom. Comp. F1
TACRED VAE
RW-HAC
EType+
SelfORE
Ours
0.247
0.426
0.302
0.576
0.526
0.564
0.633
0.803
0.510
0.602
0.343
0.509
0.439
0.541
0.562
0.208
0.469
0.260
0.630
0.619
0.362
0.597
0.607
0.608
0.660
0.264
0.526
0.364
0.619
0.639
0.159
0.281
0.143
0.447
0.419
Experimental Results of Different Models on TACRED Dataset
数据集 模型 B3 V-measure ARI
Prec. Rec. F1 Hom. Comp. F1
FewRel VAE
RW-HAC
EType+
SelfORE
Ours
0.309
0.256
0.238
0.672
0.677
0.446
0.492
0.485
0.685
0.705
0.365
0.337
0.319
0.678
0.690
0.448
0.391
0.364
0.779
0.778
0.500
0.485
0.463
0.788
0.803
0.473
0.433
0.408
0.783
0.790
0.291
0.250
0.249
0.647
0.613
Experimental Results of Different Models on FewRel Dataset
Experimental Results of Different GCN Layers
数据集 模型 B3-F1 V-measure ARI
Prec. Rec. F1 Hom. Comp. F1
TACRED LKS-GCN 0.526 0.602 0.562 0.619 0.660 0.639 0.419
(w/o)Multi-Head Attention 0.508 0.586 0.544 0.602 0.649 0.624 0.406
(w/o)Piece max pooling 0.523 0.597 0.557 0.611 0.656 0.633 0.414
FewRel LKS-GCN 0.677 0.705 0.690 0.778 0.803 0.790 0.613
(w/o)Multi-Head Attention 0.664 0.683 0.673 0.765 0.779 0.772 0.595
(w/o)Piece max pooling 0.670 0.702 0.686 0.775 0.800 0.787 0.609
Results of Ablation Experiment
头数量 TACRED B3-F1 FewRel B3-F1
1 0.556 0.683
2 0.562 0.690
4 0.558 0.685
Influence of Head on B3-F1
Visualization of Text Attention Weights of TACRED Dataset
[1] 庄传志, 靳小龙, 朱伟建, 等. 基于深度学习的关系抽取研究综述[J]. 中文信息学报, 2019, 33(12): 1-18.
[1] (Zhuang Chuanzhi, Jin Xiaolong, Zhu Weijian, et al. Deep Learning Based Relation Extraction: A Survey[J]. Journal of Chinese Information Processing, 2019, 33(12): 1-18.)
[2] Zhou G D, Su J, Zhang J, et al. Exploring Various Knowledge in Relation Extraction[C]// Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. New York: ACM, 2005: 427-434.
[3] Culotta A, McCallum A, Betz J. Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text[C]// Proceedings of the 2006 Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. New York: ACM, 2006: 296-303.
[4] Zelenko D, Aone C, Richardella A. Kernel Methods for Relation Extraction[J]. The Journal of Machine Learning Research, 2003, 3(6): 1083-1106.
[5] Bunescu R C, Mooney R J. A Shortest Path Dependency Kernel for Relation Extraction[C]// Proceedings of the 2005 Conference on Human Language Technology and Empirical Methods in Natural Language Processing. New York: ACM, 2005: 724-731.
[6] 万静, 李浩铭, 严欢春, 等. 基于循环卷积神经网络的实体关系抽取方法研究[J]. 计算机应用研究, 2020, 37(3): 699-703.
[6] (Wan Jing, Li Haoming, Yan Huanchun, et al. Relation Extraction Based on Recurrent Convolutional Neural Network[J]. Application Research of Computers, 2020, 37(3): 699-703.)
[7] Zeng D, Liu K, Lai S, et al. Relation Classification via Convolutional Deep Neural Network[C]// Proceedings of the 25th International Conference on Computational Linguistics. New York: ACM, 2014: 2335-2344.
[8] Socher R, Huval B, Manning C D, et al. Semantic Compositionality Through Recursive Matrix-Vector Spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. New York: ACM, 2012: 1201-1211.
[9] Zhang Y H, Qi P, Manning C D. Graph Convolution over Pruned Dependency Trees Improves Relation Extraction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 2205-2215.
[10] Han X, Zhu H, Yu P F, et al. FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 4803-4809.
[11] Zhang Y H, Zhong V, Chen D Q, et al. Position-Aware Attention and Supervised Data Improve Slot Filling[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017: 35-45.
[12] Xiao M, Liu C. Semantic Relation Classification via Hierarchical Recurrent Neural Network with Attention[C]// Proceedings of the 26th International Conference on Computational Linguistics. New York: ACM, 2016: 1254-1263.
[13] Miwa M, Bansal M. End-to-End Relation Extraction Using LSTMS on Sequences and Tree Structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 1105-1116.
[14] Zhou P, Shi W, Tian J, et al. Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 207-212.
[15] 张宁. 面向特定领域的命名实体识别技术研究[D]. 杭州: 浙江大学, 2018.
[15] (Zhang Ning. Researches on Domain-Specific Named Entity Recognition[D]. Hangzhou: Zhejiang University, 2018.)
[16] Mintz M, Bills S, Snow R, et al. Distant Supervision for Relation Extraction Without Labeled Data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. 2009: 1003-1011.
[17] Bollacker K, Evans C, Paritosh P, et al. Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[18] 杨穗珠, 刘艳霞, 张凯文, 等. 远程监督关系抽取综述[J]. 计算机学报, 2021, 44(8): 1636-1660.
[18] (Yang Suizhu, Liu Yanxia, Zhang Kaiwen, et al. Survey on Distantly-Supervised Relation Extraction[J]. Chinese Journal of Computers, 2021, 44(8): 1636-1660.)
[19] Zeng D J, Liu K, Chen Y B, et al. Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 1753-1762.
[20] Jiang X T, Wang Q, Li P, et al. Relation Extraction with Multi-Instance Multilabel Convolutional Neural Networks[C]// Proceedings of the 26th International Conference on Computational Linguistics. New York: ACM, 2016: 1471-1480.
[21] Lin Y K, Shen S Q, Liu Z Y, et al. Neural Relation Extraction with Selective Attention over Instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 2124-2133.
[22] Beltagy I, Lo K, Ammar W. Combining Distant and Direct Supervision for Neural Relation Extraction[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2019). 2019: 1858-1867.
[23] Elsahar H, Demidova E, Gottschalk S, et al. Unsupervised Open Relation Extraction[C]// Proceedings of the 2017 European Semantic Web Conference. Springer, 2017: 12-16.
[24] Zhang M, Su J, Wang D M, et al. Discovering Relations Between Named Entities from a Large Raw Corpus Using Tree Similarity-Based Clustering[C]// Proceedings of the 2nd International Joint Conference on Natural Language Processing. Springer, 2005: 378-389.
[25] Jing L L, Tian Y L. Self-Supervised Visual Feature Learning with Deep Neural Networks: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058.
doi: 10.1109/TPAMI.2020.2992393
[26] Wang H, Wang X, Xiong W H, et al. Self-Supervised Learning for Contextualized Extractive Summarization[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 2221-2227.
[27] Hu X M, Wen L J, Xu Y S, et al. SelfORE: Self-Supervised Relational Feature Learning for Open Relational Extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 3673-3682.
[28] Devlin J, Chang M W, Lee K, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2019: 4171-4186.
[29] Goyal P, Mahajan D, Gupta A, et al. Scaling and Benchmarking Self-Supervised Visual Representation Learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019: 6391-6400.
[30] Sachan D, Zhang Y H, Qi P, et al. Do Syntax Trees Help Pre-Trained Transformers Extract Information?[C]// Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. 2021: 2647-2661.
[31] Kipf T N, Welling M. Semi-Supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1609.02907.
[32] Jin H L, Hou L, Li J Z, et al. Fine-Grained Entity Typing via Hierarchical Multi Graph Convolutional Networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019: 4969-4978.
[33] 吴婷, 孔芳. 基于图注意力卷积神经网络的文档级关系抽取[J]. 中文信息学报, 2021, 35(10): 73-80.
[33] (Wu Ting, Kong Fang. Document-Level Relation Extraction Based on Graph Attention Convolutional Neural Network[J]. Journal of Chinese Information Processing, 2021, 35(10): 73-80.)
[34] Mandya A, Bollegala D, Coenen F. Graph Convolution over Multiple Dependency Sub-Graphs for Relation Extraction[C]// Proceedings of the 28th International Conference on Computational Linguistics. 2020: 6424-6435.
[35] Chen G M, Tian Y H, Song Y. Joint Aspect Extraction and Sentiment Analysis with Directional Graph Convolutional Networks[C]// Proceedings of the 28th International Conference on Computational Linguistics. 2020: 272-279.
[36] 王光, 李鸿宇, 邱云飞, 等. 基于图卷积记忆网络的方面级情感分类[J]. 中文信息学报, 2021, 35(8): 98-106.
[36] (Wang Guang, Li Hongyu, Qiu Yunfei, et al. Aspect-Based Sentiment Classification via Memory Graph Convolutional Network[J]. Journal of Chinese Information Processing, 2021, 35(8): 98-106.)
[37] 任秋彤, 王昊, 熊欣, 等. 融合GCN远距离约束的非遗戏剧术语抽取模型构建及其应用研究[J]. 数据分析与知识发现, 2021, 5(12): 123-136.
[37] (Ren Qiutong, Wang Hao, Xiong Xin, et al. Extracting Drama Terms with GCN Long-Distance Constrain[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 123-136.)
[38] Xie J Y, Girshick R, Farhadi A. Unsupervised Deep Embedding for Clustering Analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: ACM, 2016: 478-487.
[39] Bagga A, Baldwin B. Algorithms for Scoring Coreference Chains[C]// Proceedings of the 1st International Conference on Language Resources and Evaluation Workshop on Linguistics Conference. 1998: 563-566.
[40] Rosenburg A, Hirschberg J. V-measure: A Conditional Entropy-Based External Cluster Evaluation Measure[C]// Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2007: 410-420.
[41] Hubert L, Arabie P. Comparing Partitions[J]. Journal of Classification, 1985, 2(1): 193-218.
doi: 10.1007/BF01908075
[42] Marcheggiani D, Titov I. Discrete-State Variational Autoencoders for Joint Discovery and Factorization of Relations[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 231-244.
doi: 10.1162/tacl_a_00095
[43] Tran T T, Le P, Ananiadou S. Revisiting Unsupervised Relation Extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 7498-7505.
[44] Zhao J, Gui T, Zhang Q, et al. A Relation-Oriented Clustering Method for Open Relation Extraction[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021: 9707-9718.
[1] Ben Yanyan, Pang Xueqin. Identifying Medical Named Entities with Word Information[J]. 数据分析与知识发现, 2023, 7(5): 123-132.
[2] Han Pu, Zhong Yule, Lu Haojie, Ma Shiwen. Identifying Named Entities of Adverse Drug Reaction with Adversarial Transfer Learning[J]. 数据分析与知识发现, 2023, 7(3): 131-141.
[3] Su Mingxing, Wu Houyue, Li Jian, Huang Ju, Zhang Shunxiang. AEMIA:Extracting Commodity Attributes Based on Multi-level Interactive Attention Mechanism[J]. 数据分析与知识发现, 2023, 7(2): 108-118.
[4] Zhang Zhengang, Yu Chuanming. Knowledge Graph Completion Model Based on Entity and Relation Fusion[J]. 数据分析与知识发现, 2023, 7(2): 15-25.
[5] Zhao Yiming, Pan Pei, Mao Jin. Recognizing Intensity of Medical Query Intentions Based on Task Knowledge Fusion and Text Data Enhancement[J]. 数据分析与知识发现, 2023, 7(2): 38-47.
[6] Wang Yufei, Zhang Zhixiong, Zhao Yang, Zhang Mengting, Li Xuesi. Designing and Implementing Automatic Title Generation System for Sci-Tech Papers[J]. 数据分析与知识发现, 2023, 7(2): 61-71.
[7] Zhang Siyang, Wei Subo, Sun Zhengyan, Zhang Shunxiang, Zhu Guangli, Wu Houyue. Extracting Emotion-Cause Pairs Based on Multi-Label Seq2Seq Model[J]. 数据分析与知识发现, 2023, 7(2): 86-96.
[8] Shi Yunmei, Yuan Bo, Zhang Le, Lv Xueqiang. IMTS: Detecting Fake Reviews with Image and Text Semantics[J]. 数据分析与知识发现, 2022, 6(8): 84-96.
[9] Wu Jiang, Liu Tao, Liu Yang. Mining Online User Profiles and Self-Presentations: Case Study of NetEase Music Community[J]. 数据分析与知识发现, 2022, 6(7): 56-69.
[10] Zheng Jie, Huang Hui, Qin Yongbin. Matching Similar Cases with Legal Knowledge Fusion[J]. 数据分析与知识发现, 2022, 6(7): 99-106.
[11] Pan Huiping, Li Baoan, Zhang Le, Lv Xueqiang. Extracting Keywords from Government Work Reports with Multi-feature Fusion[J]. 数据分析与知识发现, 2022, 6(5): 54-63.
[12] Xiao Yuejun, Li Honglian, Zhang Le, Lv Xueqiang, You Xindong. Classifying Chinese Patent Texts with Feature Fusion[J]. 数据分析与知识发现, 2022, 6(4): 49-59.
[13] Yang Lin, Huang Xiaoshuo, Wang Jiayang, Ding Lingling, Li Zixiao, Li Jiao. Identifying Subtypes of Clinical Trial Diseases with BERT-TextCNN[J]. 数据分析与知识发现, 2022, 6(4): 69-81.
[14] Guo Hangcheng, He Yanqing, Lan Tian, Wu Zhenfeng, Dong Cheng. Identifying Moves from Scientific Abstracts Based on Paragraph-BERT-CRF[J]. 数据分析与知识发现, 2022, 6(2/3): 298-307.
[15] Zhang Yunqiu, Wang Yang, Li Bocheng. Identifying Named Entities of Chinese Electronic Medical Records Based on RoBERTa-wwm Dynamic Fusion Model[J]. 数据分析与知识发现, 2022, 6(2/3): 242-250.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn