Please wait a minute...
Data Analysis and Knowledge Discovery  2024, Vol. 8 Issue (2): 1-16    DOI: 10.11925/infotech.2096-3467.2022.1282
Current Issue | Archive | Adv Search |
A Survey on Session-Based Recommendation Methods with Graph Neural Network
Zhang Xiongtao1,Zhu Na2(),Guo Yuhui3
1School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
2School of National Governance, Southwest University, Chongqing 400715, China
3School of Information, Renmin University of China, Beijing 100872, China
Download: PDF (1083 KB)   HTML ( 13
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper focuses on graph neural network technology,reviewing session-based recommendation methods to provide a reference for future research. [Coverage] We took “session-based recommendation” and “graph neural network” as search terms, and 82 domestic and foreign literatures were screened from databases such as “Web of Science” and “China National Knowledge Infrastructure”. [Methods] From the perspective of framework, evaluation and trend, this paper generalises and compares session-based recommendation methods based on graph neural networks, summarises the existing evaluation resources and discusses the future research trend. [Results] Graph Neural Network is the mainstream technology for implementing session-based recommender systems. The studies on session-based recommendation methods with graph neural network mainly focus on three core problems, session graph construction, session graph learning and session interest representation. [Limitations] Session-based recommendation methods with graph neural networks are constantly emerging, and the research reviewed is only the typical research and not all studies are listed. Future research can be deepened in terms of interpretability, robustness, diversity and fairness. [Conclusions] Graph Neural Network is the mainstream technology for session-based recommender systems. Existing research has conducted preliminary exploration from various aspects and provided sufficient evaluation resources. Future research should combine the characteristics of session recommendation scenarios and develop graph neural network technology to further improve the existing research deficiencies.

Key wordsGraph Neural Network      Session-Based Recommendation      Sequential Recommendation      Recommender Systems      Deep Learning     
Received: 03 December 2022      Published: 12 September 2023
ZTFLH:  TP393  
  G250  
Fund:National Social Science Youth Foundation(20CTQ029);Key Project of Humanities and Social Science Research in Hebei Province(ZD202102)
Corresponding Authors: Zhu Na,ORCID:0000-0002-8425-1231,E-mail: zhunank@126.com。   

Cite this article:

Zhang Xiongtao, Zhu Na, Guo Yuhui. A Survey on Session-Based Recommendation Methods with Graph Neural Network. Data Analysis and Knowledge Discovery, 2024, 8(2): 1-16.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.1282     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2024/V8/I2/1

Research Statistics of Different Session-Based Recommendation Methods
Research Framework of Session-Based Recommendation Method with GNN
Schematic of Session Graph Construction Methods
图构建方法 研究思路 优点/缺点
基于单会话的
图构建方法
基于会话内连续关系 将单个会话内的每个项目视作图中的节点,通过在两个连续项目之间添加边构建会话图模型。 ? 优点:操作相对直接,构建逻辑简单;
? 缺点:无法克服会话数据固有的稀疏性问题。
考虑会话内非连续关系 利用非连续项目关系弥补连续项目关系数据的稀疏性,以综合连续和非连续关系构建会话图模型。 ? 优点:利用非连续关系有效稠密化会话图结构;
? 缺点:无法克服会话数据固有的稀疏性问题。
基于多会话的
图构建方法
基于超图 通过规定超边为项目建立联系,以有效利用项目之间的非成对关系构建会话图模型。 ? 优点:利用项目之间的非成对关系有效丰富会话图结构;
? 缺点:在时序关系利用上存在限制。
基于常规图 利用额外会话中的项目关系来丰富单个会话中的项目转移关系,以有效利用跨会话项目关系。 ? 优点:利用跨会话项目转移关系有效丰富会话图结构;
? 缺点:增加了噪声信息引入的风险。
Research Ideas, Advantages and Disadvantages of Session Graph Construction Methods
Schematic of Session Graph Learning Methods
图学习方法 研究思路 优点/缺点
基于GCN 采用池化操作等同地对所有邻居节点进行信息聚合,然后以聚合信息更新中心节点表示。 ? 优点:具有简单的运算逻辑;
? 缺点:不适用于大规模会话图学习。
基于GraphSAGE 为每个中心节点采样固定数量的邻居,然后采用池化操作对邻居信息进行聚合,进而结合聚合的邻居信息对中心节点表示进行更新。 ? 优点:具有较强的可扩展性和灵活性;
? 缺点:在信息传播过程中无法合理区分不同邻居节点对中心节点的重要性。
基于GAT 利用注意力机制差异化整合节点的邻居节点信息,然后结合邻居节点信息更新中心节点的表示。 ? 优点:在信息传播过程中,结合邻居节点权重更准确地学习会话图;
? 缺点:在顺序感知的会话图学习方面存在限制。
基于GGNN 将中心节点的前项邻居和后项邻居信息进行聚合,然后将聚合信息输入GRU实现节点表示更新。 ? 优点:在会话图学习的过程中有效地考虑项目之间的顺序关联;
? 缺点:需要搭配合理的情景建模方法才可实现有效的会话推荐。
Research Ideas, Advantages and Disadvantages of Session Graph Learning Methods
Schematic of Session Interest Representation Methods
会话兴趣表示方法 研究思路 优点/缺点
基于注意力 将会话中最后一次交互视作局部会话兴趣;将局部会话兴趣视作查询项,采用注意力机制对会话中所有项目进行加权聚合,获得全局会话兴趣;融合局部和全局会话兴趣,得到完整的会话兴趣表示。 ? 优点:通过差异化整合会话中的项目表示更准确地表示会话兴趣;
? 缺点:仅利用注意力机制会忽略项目在会话中的位置信息。
基于RNN 采用RNN获取各个项目的隐藏状态,通过整合各个项目的隐藏状态输出会话兴趣的最终表示。 ? 优点:利用项目之间的顺序依赖建模会话兴趣表示;
? 缺点:无法有效克服噪声项对会话兴趣表示造成的影响。
基于位置 将项目在当前会话中的位置编码为位置向量,然后组合位置向量与项目表示,将位置信息融入项目表示。 ? 优点:将位置信息融入项目表示,实现更准确的会话兴趣建模;
? 缺点:无法综合会话内项目间关系完整表示会话兴趣。
Research Ideas, Advantages and Disadvantages of Session Interest Learning Methods
实现过程 方法 代表性工作
会话图构建 基于单会话的图构建方法 文献[13], 文献[19], 文献[20]等
基于多会话的图构建方法 文献[21], 文献[25], 文献[27]等
会话图学习 基于GCN的图学习方法 文献[39], 文献[40], 文献[41]等
基于GraphSAGE的图学习方法 文献[21], 文献[43], 文献[48]等
基于GAT的图学习方法 文献[14], 文献[30], 文献[49]等
基于GGNN的图学习方法 文献[13], 文献[19], 文献[20]等
会话兴趣学习 基于注意力机制的会话兴趣学习方法 文献[13], 文献[39], 文献[40]等
基于循环神经网络的会话兴趣学习方法 文献[44], 文献[48], 文献[49]等
基于位置的会话兴趣学习方法 文献[50], 文献[51], 文献[52]等
Summary of Representative Works in the Research Framework
应用领域 数据集名称 会话数量 交互数量 项目数量 平均长度 数据集获取网址
电子
商务
推荐
Yoochoose 1 375 128 5 426 961 28 582 3.95 https://www.kaggle.com/chadgostopp/recsys-challenge-2015
Tmall 1 774 729 13 418 695 425 348 7.56 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
Diginetica 780 328 982 961 43 097 5.12 https://competitions.codalab.org/competitions/11161
RetailRocket 59 962 212 182 31 968 3.54 https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
新闻
推荐
GLEF 2017 16 444 442 5 540 486 742 3.37 https://www.newsreelchallenge.org/dataset
Globo 1 031 167 2 930 849 13 092 2.84 https://www.newsreelchallenge.org/dataset
Adressa 16G 2 215 62 908 6 765 28.4 http://reclab.idi.ntnu.no/dataset
音乐
推荐
Last.FM 169 576 2 887 349 449 037 17.03 http://millionsongdataset.com/lastfm/
Nowplaying 27 005 271 177 75 169 10.04 https://www.kaggle.com/chelseapower/nowplayingrs
地点
推荐
Gowalla * 245 157 6 871 * http://snap.stanford.edu/data/loc-gowalla.html
Foursquare * 155 365 2 675 * https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset
Yelp * 6 990 280 150 346 * https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
影视
推荐
Movielens-1M * 1 000 209 3 706 * http://files.grouplens.org/datasets/movielens/
Kwai * 775 834 643 310 681 * https://cloud.tsinghua.edu.cn/d/eb0fc2ebab8d42189f3b/
Tiktok * 1 253 112 7 085 * https://www.kaggle.com/datasets/erikvdven/tiktoktrendingdecember-2020
Statistics for Typical Datasets
类别 模型 主要技术 年份 来源简称 源码获取网址
传统会话推荐模型 POP[59] 统计推断 https://github.com/rn5l/session-rec
Item-KNN[5] K最邻近法 2001 WWW* https://github.com/rn5l/session-rec
FPMC[6] 个性化分解的MC 2010 WWW* https://github.com/khesui/FPMC
基于RNN的
会话推荐模型
NARM[10] 基于注意力机制的RNN 2017 CIKM* https://github.com/rn5l/session-rec
STAMP[60] 基于短期注意和记忆优先的RNN 2018 KDD* https://github.com/rn5l/session-rec
GRU4REC[9] 基于门控循环单元的RNN 2016 ICLR* https://github.com/rn5l/session-re
基于GNN的
会话推荐模型
SR-GNN[13] 融合软注意力机制的GGNN 2019 AAAI* https://github.com/CRIPAC-DIG/SR-GNN
TAGNN[20] 融合目标注意力机制的GGNN 2020 SIGIR* https://github.com/CRIPAC-DIG/TAGNN
GCE-GNN[14] 融合位置感知注意力机制的GAT 2020 SIGIR* https://github.com/CCIIPLab/GCE-GNN
Illustration of Key Information for Representative Baselines
评价资源 分类 代表性工作
数据集 电子商务领域 Yoochoose[13,4?????????????????????????????????????????????-50]
Tmall[14,25]
Diginetica[13,19,50]
RetailRocket[19,50]
新闻推荐领域 GLEF 2017[5]
Globo[61-62]
Adressa 16G[63]
音乐推荐领域 Last.FM[39,56]
Nowplaying[1,14]
地点推荐领域 Gowalla[55]
Yelp[66]
Foursquare[68]
影视推荐领域 Movielens-1M[63-64]
Kwai[65]
Tiktok[66]
评价指标 非位置敏感型 Precision[13-14,49]
Recall[39-40,50]
HR[19,27]
位置敏感型 MRR[13,19,49]
NDCG[19,34]
基线模型 传统会话推荐模型 POP[13-14,19]
Item-KNN[13-14,19]
FPMC[13-14,19]
基于RNN的会话推荐模型 GRU4Rec[14,32,40]
NARM[14,44,49]
STAMP[14,40,49]
基于GNN的会话推荐模型 SR-GNN[14,24,40]
GC-SAN[12,21,58]
GCE-GNN[43,58]
Summary of Representative Works in the Evaluation Resource
[1] Li A S, Zhu J H, Li Z Y, et al. Transition Information Enhanced Disentangled Graph Neural Networks for Session-Based Recommendation[J]. Expert Systems with Applications, 2022, 210: Article No.118336.
[2] Wang S J, Cao L B, Wang Y, et al. A Survey on Session-Based Recommender Systems[J]. ACM Computing Surveys, 2022, 54(7): Article No.154.
[3] Zhang X K, Lin H F, Xu B, et al. Dynamic Intent-Aware Iterative Denoising Network for Session-Based Recommendation[J]. Information Processing & Management, 2022, 59(3): Article No.102936.
[4] Wang S J, Cao L B. Inferring Implicit Rules by Learning Explicit and Hidden Item Dependency[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(3): 935-946.
doi: 10.1109/TSMC.6221021
[5] Ludewig M, Jannach D. Evaluation of Session-Based Recommendation Algorithms[J]. User Modeling and User-Adapted Interaction, 2018, 28(4-5): 331-390.
doi: 10.1007/s11257-018-9209-6
[6] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing Personalized Markov Chains for Next-Basket Recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 811-820.
[7] Tavakol M, Brefeld U. Factored MDPS for Detecting Topics of User Sessions[C]// Proceedings of the 8th ACM Conference on Recommender Systems. ACM, 2014: 33-40.
[8] Wu Z H, Pan S R, Chen F W, et al. A Comprehensive Survey on Graph Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
doi: 10.1109/TNNLS.5962385
[9] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-Based Recommendations with Recurrent Neural Networks[C]// Proceedings of the 4th International Conference on Learning Representations. 2016: 1-10.
[10] Li J, Ren P J, Chen Z M, et al. Neural Attentive Session-Based Recommendation[C]// Proceedings of the 26th International Conference on Information and Knowledge Management. ACM, 2017: 1419-1428.
[11] 赵海燕, 赵佳斌, 陈庆奎, 等. 会话推荐系统[J]. 小型微型计算机系统, 2019, 40(9): 1869-1875.
[11] (Zhao Haiyan, Zhao Jiabin, Chen Qingkui, et al. Session-Based Recommendation System[J]. Journal of Chinese Computer Systems, 2019, 40(9): 1869-1875.)
[12] Feng C Q, Shi C Y, Liu C M, et al. Context-Aware Item Attraction Model for Session-Based Recommendation[J]. Expert Systems with Applications, 2021, 176: Article No.114834.
[13] Wu S, Tang Y Y, Zhu Y Q, et al. Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019: 346-353.
[14] Wang Z Y, Wei W, Cong G, et al. Global Context Enhanced Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 169-178.
[15] Ludewig M, Mauro N, Latifi S, et al. Performance Comparison of Neural and Non-Neural Approaches to Session-Based Recommendation[C]// Proceedings of the 13th ACM Conference on Recommender Systems. ACM, 2019: 462-466.
[16] Wang X, He X N, Wang M, et al. Neural Graph Collaborative Filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2019: 165-174.
[17] Feng L X, Cai Y Q, Wei E L, et al. Graph Neural Networks with Global Noise Filtering for Session-Based Recommendation[J]. Neurocomputing, 2022, 472: 113-123.
doi: 10.1016/j.neucom.2021.11.068
[18] Yu J L, Yin H Z, Xia X, et al. Are Graph Augmentations Necessary?: Simple Graph Contrastive Learning for Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1294-1303.
[19] Xu C F, Zhao P P, Liu Y C, et al. Graph Contextualized Self-Attention Network for Session-Based Recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. ACM, 2019: 3940-3946.
[20] Yu F, Zhu Y Q, Liu Q, et al. TAGNN: Target Attentive Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 1921-1924.
[21] Wang W, Zhang W, Liu S, et al. Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction[C]// Proceedings of the 2020 World Wide Web Conference. 2020: 3056-3062.
[22] 黄震华, 林小龙, 孙圣力, 等. 会话场景下基于特征增强的图神经推荐方法[J]. 计算机学报, 2022, 45(4): 766-780.
[22] (Huang Zhenhua, Lin Xiaolong, Sun Shengli, et al. Feature Augmentation Based Graph Neural Recommendation Method in Session Scenarios[J]. Chinese Journal of Computers, 2022, 45(4): 766-780.)
[23] Ma C, Ma L H, Zhang Y X, et al. Memory Augmented Graph Neural Networks for Sequential Recommendation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 5045-5052.
[24] Pan Z Q, Cai F, Chen W Y, et al. Star Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM, 2020: 1195-1204.
[25] Xia X, Yin H Z, Yu J L, et al. Self-Supervised Hypergraph Convolutional Networks for Session-Based Recommendation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021: 4503-4511.
[26] Li Y F, Gao C, Luo H L, et al. Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-Based Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1997-2002.
[27] Wang J L, Ding K Z, Zhu Z W, et al. Session-Based Recommendation with Hypergraph Attention Networks[C]// Proceedings of the 21st SIAM International Conference on Data Mining. 2021: 82-90.
[28] Xia X, Yin H Z, Yu J L, et al. Self-Supervised Graph Co-Training for Session-Based Recommendation[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021: 2180-2190.
[29] Zhang J J, Ma C H, Zhong C L, et al. MBPI: Mixed Behaviors and Preference Interaction for Session-Based Recommendation[J]. Applied Intelligence, 2021, 51(10): 7440-7452.
doi: 10.1007/s10489-021-02284-8
[30] 乔晶晶, 王莉. 基于微观行为的自适应多注意力会话推荐[J]. 计算机科学, 2022, 49(11): 117-125.
doi: 10.11896/jsjkx.210900061
[30] (Qiao Jingjing, Wang Li. Modeling User Micro-Behavior via Adaptive Multi-Attention Network for Session-Based Recommendation[J]. Computer Science, 2022, 49(11): 117-125.)
doi: 10.11896/jsjkx.210900061
[31] 孙伟, 申建芳, 陈平华. 基于多模态知识图的用户微行为会话推荐[J]. 小型微型计算机系统, 2023, 44(4): 706-714.
[31] (Sun Wei, Shen Jianfang, Chen Pinghua. User Micro-Behavior Based on Multi-Modal Knowledge Graphs for Session-Based Recommender[J]. Journal of Chinese Computer Systems, 2023, 44(4): 706-714.)
[32] Zhang M Q, Wu S, Gao M, et al. Personalized Graph Neural Networks with Attention Mechanism for Session-Aware Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3946-3957.
doi: 10.1109/TKDE.2020.3031329
[33] Pang Y T, Wu L F, Shen Q, et al. Heterogeneous Global Graph Neural Networks for Personalized Session-Based Recommendation[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022: 775-783.
[34] Chen C, Guo J, Song B. Dual Attention Transfer in Session-Based Recommendation with Multi-Dimensional Integration[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2021: 869-878.
[35] 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐[J]. 计算机科学, 2022, 49(9): 55-63.
doi: 10.11896/jsjkx.210700085
[35] (Zhou Fangquan, Cheng Weiqing. Sequence Recommendation Based on Global Enhanced Graph Neural Network[J]. Computer Science, 2022, 49(9): 55-63.)
doi: 10.11896/jsjkx.210700085
[36] Sheu H S, Chu Z X, Qi D Q, et al. Knowledge-Guided Article Embedding Refinement for Session-Based News Recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7921-7927.
doi: 10.1109/TNNLS.2021.3084958
[37] Zhao P P, Luo A J, Liu Y C, et al. Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2512-2524.
doi: 10.1109/TKDE.2020.3007194
[38] Wu S W, Sun F, Zhang W T, et al. Graph Neural Networks in Recommender Systems: A Survey[J]. ACM Computing Surveys, 55(5): Article No.97.
[39] Qiu R H, Yin H Z, Huang Z, et al. GAG: Global Attributed Graph Neural Network for Streaming Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 669-678.
[40] Zheng Y J, Liu S Y, Li Z K, et al. DGTN: Dual-Channel Graph Transition Network for Session-Based Recommendation[C]// Proceedings of the 2020 International Conference on Data Mining Workshop. IEEE, 2020: 236-242.
[41] Sheu H S, Li S. Context-Aware Graph Embedding for Session-Based News Recommendation[C]// Proceedings of the 14th ACM Conference on Recommender Systems. ACM, 2020: 657-662.
[42] Ying R, He R N, Chen K F, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 974-983.
[43] Liu F, Liu W W, Li X T, et al. Inter-Sequence Enhanced Framework for Personalized Sequential Recommendation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 1-9.
[44] Song W P, Xiao Z P, Wang Y F, et al. Session-Based Social Recommendation via Dynamic Graph Attention Networks[C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. ACM, 2019: 555-563.
[45] Dang T K, Nguyen Q P, Nguyen V S. A Study of Deep Learning-Based Approaches for Session-Based Recommendation Systems[J]. SN Computer Science, 2020, 1(4): Article No.216.
[46] Wang L Y, Xu X H, Ouyang K, et al. Self-Supervised Dual-Channel Attentive Network for Session-Based Social Recommendation[C]// Proceedings of the 38th International Conference on Data Engineering. IEEE, 2022: 2034-2045.
[47] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
[47] (Zhang Ruoqi, Shen Jianfang, Chen Pinghua. Session Sequence Recommendation with GNN, Bi-GRU and Attention Mechanism[J]. Data Analysis and Knowledge Discovery, 2022, 6(6): 46-54.)
[48] Gu P, Han Y Q, Gao W, et al. Enhancing Session-Based Social Recommendation Through Item Graph Embedding and Contextual Friendship Modeling[J]. Neurocomputing, 2021, 419: 190-202.
doi: 10.1016/j.neucom.2020.08.023
[49] Qiu R H, Li J J, Huang Z, et al. Rethinking the Item Order in Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 579-588.
[50] Gupta P, Garg D, Malhotra P, et al. NISER: Normalized Item and Session Representations with Graph Neural Networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 1-6.
[51] Lai S Q, Meng E L, Zhang F, et al. An Attribute-Driven Mirror Graph Network for Session-Based Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1674-1683.
[52] Yuan J H, Song Z H, Sun M Y, et al. Dual Sparse Attention Network for Session-Based Recommendation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021: 4635-4643.
[53] Chen D L, Lin Y K, Li W, et al. Measuring and Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topological View[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 3438-3445.
[54] Zhang S J, Yin H Z, Chen T, et al. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 689-698.
[55] Gao C, Wang X, He X N, et al. Graph Neural Networks for Recommender System[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022: 1623-1625.
[56] Guo J Y, Yang Y M, Song X C, et al. Learning Multi-Granularity Consecutive User Intent Unit for Session-Based Recommendation[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022: 343-352.
[57] Chen D P, Zhang X M, Wang H X, et al. TEAN: Timeliness Enhanced Attention Network for Session-Based Recommendation[J]. Neurocomputing, 2020, 411: 229-238.
doi: 10.1016/j.neucom.2020.06.063
[58] Gan M X, Zhang X T. Integrating Community Interest and Neighbor Semantic for Microblog Recommendation[J]. International Journal of Web Services Research, 2021, 18(2): 54-75.
doi: 10.4018/IJWSR
[59] Steck H. Item Popularity and Recommendation Accuracy[C]// Proceedings of the 5th ACM Conference on Recommender Systems. ACM, 2011: 125-132.
[60] Liu Q, Zeng Y F, Mokhosi R, et al. STAMP: Short-Term Attention/Memory Priority Model for Session-Based Recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1831-1839.
[61] Li J, Zhang Y, Lin X, et al. TAML: Time-Aware Meta Learning for Cold-Start Problem in News Recommendation[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2415-2419.
[62] Zhang M, Wang G, Ren L, et al. METoNR: A Meta Explanation Triplet Oriented News Recommendation Model[J]. Knowledge-Based Systems, 2022, 238: 107922.
doi: 10.1016/j.knosys.2021.107922
[63] Zhang L, Liu P, Gulla J A. A Deep Joint Network for Session-based News Recommendations with Contextual Augmentation[M]//Proceedings of the 29th on Hypertext and Social Media. 2018: 201-209.
[64] Zhang Y, Feng F, He X, et al. Causal Intervention for Leveraging Popularity Bias in Recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021: 11-20.
[65] Sun Y, Yuan F, Yang M, et al. A Generic Network Compression Framework for Sequential Recommender Systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 1299-1308.
[66] Wei Y, Wang X, Nie L, et al. MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video[C]// Proceedings of the 27th ACM International Conference on Multimedia. 2019: 1437-1445.
[67] Chen J W, Dong H D, Wang X, et al. Bias and Debias in Recommender System: A Survey and Future Directions[OL]. arXiv Preprint, arXiv: 2010.03240.
[68] Hui B, Zhang L Z, Zhou X, et al. Personalized Recommendation System Based on Knowledge Embedding and Historical Behavior[J]. Applied Intelligence, 2022, 52(1): 954-966.
doi: 10.1007/s10489-021-02363-w
[69] Li L, Zhang Y F, Chen L. Personalized Prompt Learning for Explainable Recommendation[J]. ACM Transactions on Information Systems, 2023, 41(4): Article No.103.
[70] Wang Y F, Ma W Z, Zhang M, et al. A Survey on the Fairness of Recommender Systems[J]. ACM Transactions on Information Systems, 2023, 41(3): Article No.52.
[71] 张海. 网络用户信息茧房形成机制的概念框架研究[J]. 情报理论与实践, 2021, 44(11): 60-64.
doi: 10.16353/j.cnki.1000-7490.2021.11.009
[71] (Zhang Hai. Research on the Conceptual Framework of the Formation Mechanism of Internet Users' Information Cocoon[J]. Information Studies: Theory & Application, 2021, 44(11): 60-64.)
doi: 10.16353/j.cnki.1000-7490.2021.11.009
[72] Ma W Z, Zhang M, Cao Y, et al. Jointly Learning Explainable Rules for Recommendation with Knowledge Graph[C]// Proceedings of the 2019 World Wide Web Conference. ACM, 2019: 1210-1221.
[73] Huang X W, Fang Q, Qian S S, et al. Explainable Interaction-Driven User Modeling over Knowledge Graph for Sequential Recommendation[C]// Proceedings of the 27th ACM International Conference on Multimedia. ACM, 2019: 548-556.
[74] Wang X, Wang D X, Xu C R, et al. Explainable Reasoning over Knowledge Graphs for Recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019: 5329-5336.
[75] Yuan H, Tang J L, Hu X, et al. XGNN: Towards Model-Level Explanations of Graph Neural Networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020: 430-438.
[76] Schnake T, Eberle O, Lederer J, et al. Higher-Order Explanations of Graph Neural Networks via Relevant Walks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7581-7596.
doi: 10.1109/TPAMI.2021.3115452
[77] Xu D K, Cheng W, Luo D S, et al. InfoGCL: Information-Aware Graph Contrastive Learning[OL]. arXiv Preprint, arXiv: 2110.15438.
[78] Ohri K, Kumar M. Review on Self-Supervised Image Recognition Using Deep Neural Networks[J]. Knowledge-Based Systems, 2021, 224: Article No.107090.
[79] Feng C Q, Shi C Y, Hao S F, et al. Hierarchical Social Similarity-Guided Model with Dual-Mode Attention for Session-Based Recommendation[J]. Knowledge-Based Systems, 2021, 230: Article No.107380.
[80] Zhu T Y, Sun L L, Chen G Q. Embedding Disentanglement in Graph Convolutional Networks for Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 431-442.
[81] Zheng Y, Wang D. A Survey of Recommender Systems with Multi-Objective Optimization[J]. Neurocomputing, 2022, 474: 141-153.
doi: 10.1016/j.neucom.2021.11.041
[82] Zhou Y S, Zhu L, Wu C H, et al. Do the Rich Grow Richer? An Empirical Analysis of the Matthew Effect in an Online Healthcare Community[J]. Electronic Commerce Research and Applications, 2022, 52: Article No.101125.
[1] Li Hui, Hu Yaohua, Xu Cunzhen. Personalized Recommendation Algorithm with Review Sentiments and Importance[J]. 数据分析与知识发现, 2024, 8(1): 69-79.
[2] Xiang Zhuoyuan, Chen Hao, Wang Qian, Li Na. Few-Shot Language Understanding Model for Task-Oriented Dialogues[J]. 数据分析与知识发现, 2023, 7(9): 64-77.
[3] Nie Hui, Cai Ruisheng. Online Doctor Recommendation System with Attention Mechanism[J]. 数据分析与知识发现, 2023, 7(8): 138-148.
[4] Li Guangjian, Yuan Yue. Review of Knowledge Elements Extraction in Scientific Literature Based on Deep Learning[J]. 数据分析与知识发现, 2023, 7(7): 1-17.
[5] Wang Nan, Wang Qi. Evaluating Student Engagement with Deep Learning[J]. 数据分析与知识发现, 2023, 7(6): 123-133.
[6] Xu Xin, Li Qian, Yao Zhanlei. Technology Recognition and Link Prediction Method Based on GNN[J]. 数据分析与知识发现, 2023, 7(6): 15-25.
[7] Wu Jialun, Zhang Ruonan, Kang Wulin, Yuan Puwei. Deep Learning Model of Drug Recommendation Based on Patient Similarity Analysis[J]. 数据分析与知识发现, 2023, 7(6): 148-160.
[8] Wang Xiaofeng, Sun Yujie, Wang Huazhen, Zhang Hengzhang. Construction and Verification of Type-Controllable Question Generation Model Based on Deep Learning and Knowledge Graphs[J]. 数据分析与知识发现, 2023, 7(6): 26-37.
[9] Liu Yang, Zhang Wen, Hu Yi, Mao Jin, Huang Fei. Hotel Stock Prediction Based on Multimodal Deep Learning[J]. 数据分析与知识发现, 2023, 7(5): 21-32.
[10] Huang Xuejian, Ma Tinghuai, Wang Gensheng. Detecting Weibo Rumors Based on Hierarchical Semantic Feature Learning Model[J]. 数据分析与知识发现, 2023, 7(5): 81-91.
[11] Tian Tianjunzi, Zhu Xuefang. Session-Based Recommendation Algorithm for Repeat Consumption Scenarios[J]. 数据分析与知识发现, 2023, 7(4): 89-100.
[12] Wang Yinqiu, Yu Wei, Chen Junpeng. Automatic Question-Answering in Chinese Medical Q & A Community with Knowledge Graph[J]. 数据分析与知识发现, 2023, 7(3): 97-109.
[13] Pei Wei, Sun Shuifa, Li Xiaolong, Lu Ji, Yang Liu, Wu Yirong. Medical Named Entity Recognition with Domain Knowledge[J]. 数据分析与知识发现, 2023, 7(3): 142-154.
[14] Zhang Zhengang, Yu Chuanming. Knowledge Graph Completion Model Based on Entity and Relation Fusion[J]. 数据分析与知识发现, 2023, 7(2): 15-25.
[15] Shen Lining, Yang Jiayi, Pei Jiaxuan, Cao Guang, Chen Gongzheng. A Fine-Grained Sentiment Recognition Method Based on OCC Model and Triggering Events[J]. 数据分析与知识发现, 2023, 7(2): 72-85.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn