Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (9): 54-57    DOI: 10.11925/infotech.1003-3513.2007.09.11
Current Issue | Archive | Adv Search |
A Model for Ontology-based Open Knowledge Navigation Build and Its Realization
Feng Lanping  Zhang Jiguo
(College of Commerce, Hohai University, Changzhou 213022,China)
Export: BibTeX | EndNote (RIS)      

In this paper, a model for Ontology-based Open Knowledge Navigation (Onto_OKN) build is designed to solve the problem existing in current knowledge navigation.New navigation creation module, knowledge evaluation module and navigation management are the key modules and analyzed. The model provides an approach to interest-user collaborative building of knowledge navigation and multi-discipline knowledge represent, which mitigates the burden of knowledge developer and experts, improves the common understanding of users, ability of navigation collaboration and knowledge share to some extent, and then it provides efficient knowledge service to users.

Key wordsKnowledge navigation      Ontology      Knowledge evaluation     
Received: 02 August 2007      Published: 25 September 2007


Corresponding Authors: Feng Lanping     E-mail:
About author:: Feng Lanping,Zhang Jiguo

Cite this article:

Feng Lanping,Zhang Jiguo. A Model for Ontology-based Open Knowledge Navigation Build and Its Realization. New Technology of Library and Information Service, 2007, 2(9): 54-57.

URL:     OR

[1] Gruber T R.Toward Principles for the Design of Ontologies Used for Knowledge Sharing[C],presented at International Workshop on Formal Ontology, Padova, Italy, 1993.
[2] Manola F,Miller E.RDF Primer W3C Recommendation 10 February 2004,[EB/OL].[2007-06-08].
[3] Deborah L. McGuinness,Frank van Harmelen. OWL Web Ontology Language Overview[EB/OL].[2007-06-08]
[4] Horridge M. A Practical Guide To Building OWL Ontologies With The Protégé-OWL Plugin Edition 1.0[EB/OL][2007-06-09] tutorials/ProtegeOWLTutorial.pdf.
[5] Jena 2 Ontology API[EB/OL].[2007-06-10].

[1] Sheng Shu, Huang Qi, Yang Yang, Xie Qiwen, Qin Xinguo. Exchanging Chinese Medical Information Based on HL7 FHIR[J]. 数据分析与知识发现, 2021, 5(11): 13-28.
[2] Zeng Zhen,Li Gang,Mao Jin,Chen Jinghao. Data Governance and Domain Ontology of Regional Public Security[J]. 数据分析与知识发现, 2020, 4(9): 41-55.
[3] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[4] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[5] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[6] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[7] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[8] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[9] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[10] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[11] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[12] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[13] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[14] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[15] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938