Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (1): 43-49    DOI: 10.11925/infotech.1003-3513.2013.01.07
Current Issue | Archive | Adv Search |
Mechanical Design Image Retrieval with Combined Geometrical Features
Fang Naiwei, Lv Xueqiang, Zhang Dan
Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101, China
Export: BibTeX | EndNote (RIS)      
Abstract  Content-based mechanical design image retrieval is of great importance for the mechanical design industry. According to the general characteristics of mechanical design images, this paper proposes a new retrieval method based on combined geometrical features. Firstly, seven features such as solidity, rectangular degree and so on, are extracted from the shape region of a mechanical design image, all the features easily obtained through computing the perimeter, area,etc, and need no normalization. Secondly, the selected features are combined to determine the shape feature descriptor. The proposed descriptor is then applied in mechanical design image retrieval. The experiments show that the proposed method performs better than Fourier Descriptors and Hu invariant moments in the retrieval of mechanical design images.
Key wordsMechanical design image      Combined geometrical features      Shape descriptors      Image retrieval     
Received: 13 December 2012      Published: 29 March 2013



Cite this article:

Fang Naiwei, Lv Xueqiang, Zhang Dan. Mechanical Design Image Retrieval with Combined Geometrical Features. New Technology of Library and Information Service, 2013, 29(1): 43-49.

URL:     OR

[1] 邱丽丽. 基于内容的矢量工程图检索技术研究[D]. 南京:南京航空航天大学, 2009.(Qiu Lili. Research on Content-based Vector Engineering Drawing Retrieval[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2009.)

[2] 桑鑫焱. 图像的形状特性分析与检索[D]. 北京:中国石油大学,2008.(Sang Xinyan. Shape Feature Analyse and Retrieval of Image[D].Beijing: China University of Petroleum,2008.)

[3] 余博, 郭雷,赵天云,等.Freeman链码描述的曲线匹配方法[J]. 计算机工程与应用,2012,48(4):5-8.(Yu Bo, Guo Lei, Zhao Tianyun, et al.Curve Matching Method for FFC Representation[J]. Computer Engineering and Applications,2012,48(4):5-8.)

[4] 黄宣达, 林萌, 王明芬. 基于CSS图像的形状相似性检索[J]. 计算机工程与科学, 2007, 29(8):46-49. (Huang Xuanda, Lin Meng, Wang Mingfen. Shape Similarity Retrieval Based on Curvature Scale Space Images[J].Computer Engineering and Science,2007,29(8):46-49.)

[5] Wong W T, Shih F Y, Liu J. Shape-based Image Retrieval Using Support Vector Machines, Fourier Descriptors and Self-organizing Maps[J].Information Sciences,2007,177(8):1878-1891.

[6] 郭丹, 闫德勤, 吴晓婷, 等. 一种基于Zernike矩形状检索的新算法[J]. 计算机科学, 2010, 37(11):247-251.(Guo Dan, Yan Deqin, Wu Xiaoting, et al. New Algorithm of Zernike Moments Features for Shape-based Image Retrieval[J].Computer Science,2010,37(11):247-251.)

[7] Flusser J, Suk T. Pattern Recognition by Affine Moment Invariants[J].Pattern Recognition, 1993, 26(1): 167-174.

[8] 张文斌, 王树梅,刘伟辉. 基于形状不变矩进行汉画像图像检索[J]. 软件导刊, 2010, 9(1):169-171. (Zhang Wenbin,Wang Shumei,Liu Weihui. Image Retrieval in Han Dynasty Stone Based on Shape Invariant Moments[J].Software Guide,2010,9(1):169-171.)

[9] Wikipedia. Flood Fill[EB/OL].[2012-11-02].

[10] 阮秋琦. 数字图像处理:MATLAB 版[M].北京:电子工业出版社, 2009:273-276.(Ruan Qiuqi. Digital Image Processing Using MATLAB[M]. Beijing: Publishing House of Electronics Industry, 2009: 273-276.)

[11] 葛伟华, 陈优广. 基于边界跟踪的区域面积计算[J]. 计算机应用与软件, 2008, 25(6):239-274.(Ge Weihua,Chen Youguang. Calculation of Image's Region Area Based on Contour Tracing[J]. Computer Application and Software, 2008, 25(6):239-274.)

[12] 王晓峰, 黄德双, 杜吉祥, 等. 叶片图像特征提取与识别技术的研究[J]. 计算机工程与应用, 2006, 42(3):189-193. (Wang Xiaofeng, Huang Deshuang,Du Jixiang,et al. Feature Extraction and Recognition for Leaf Images [J]. Computer Engineering and Applications, 2006, 42(3):189-193.)

[13] Rosin P L. Computing Global Shape Measures[OL]. Handbook of Pattern Recognition and Computer Vision. 2005: 177-196. [2012-11-02].
[1] Wu Kun, Xie Xiaqing, Bai Quanwei, Wu Xu. Implementation and Application of Image Retrieval Technology in “Classic Reading” Teaching System[J]. 现代图书情报技术, 2014, 30(5): 90-95.
[2] Cheng Xiufeng, Zhu Song, Xia Lixin. Design and Application of Distributed Image Retrieval Based on Color Model to Histogram Conversion[J]. 现代图书情报技术, 2011, 27(5): 42-48.
[3] Cao Mei,Zhu Xuefang. Research Progress on User Image Descriptions[J]. 现代图书情报技术, 2009, 25(12): 31-36.
[4] Zhao Ying,Liu Jiajia . Remote Sensing Image Retrieval Based on Bayes Classification[J]. 现代图书情报技术, 2006, 1(5): 36-39.
[5] Huang Kun,Lai Maosheng . A Study on Kansei Engineering and Its Application in Image Retrieval[J]. 现代图书情报技术, 2006, 1(5): 31-35.
[6] Yuan Fuyong,Wang Haixia,Yang Zhiqiu. Research for Texture Analysis in Content-Based Image Retrieval[J]. 现代图书情报技术, 2006, 22(1): 59-61.
[7] Zhou Ning,Yang Chuanzhi,Wu Jiaxin. A Method of Image Index and Retrieval Using XML[J]. 现代图书情报技术, 2005, 21(9): 32-35.
[8] Wu Jiaxin,Zhou Ning,Zhang Shaolong. The Database Approach for Image Indexing and Retrieval[J]. 现代图书情报技术, 2005, 21(7): 11-14.
[9] Huang Kun,Lai Maosheng. Research on the Techniques of Trademark Image Retrieval[J]. 现代图书情报技术, 2004, 20(4): 32-36.
[10] Meng Xiangzeng,Zhong Yixin. Images Retrieval Based on Semantic in WWW[J]. 现代图书情报技术, 2004, 20(3): 35-37.
[11] Xiong Huixiang. Development Direction of Content Based Image Retrieval[J]. 现代图书情报技术, 2004, 20(12): 32-35.
[12] Kong Tao,Lai Maosheng. Meaning Association-Based Chinese Image Search Engine[J]. 现代图书情报技术, 2002, 18(3): 63-65.
[13] Wang Xin. WWW-Based Image Retrieval Techniques[J]. 现代图书情报技术, 2002, 18(3): 70-73.
[14] Wen Yanping. Research on Content-based Image Retrieval System[J]. 现代图书情报技术, 2001, 17(1): 45-47.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938