Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (9): 22-32    DOI: 10.11925/infotech.1003-3513.2014.09.04
Current Issue | Archive | Adv Search |
Research Review on Music Personalized Recommendation System
Tan Xueqing, He Shan
School of Information Management, Wuhan University, Wuhan 430072, China
Export: BibTeX | EndNote (RIS)      

[Objective] The paper surveys and summaries the general situation of the research on music recommendation, discusses the existing problems, and proposes the corresponding research hot spot. [Methods] By using literature analysis method, the paper introduces each recommended strategy briefly from the angle of the recommendation algorithm, categorizes and summaries the articles mainly relating to music recommendation from different description perspectives of music resources. [Results] Further put forward new ideas by using rough set theory to extract the important context information, then combining user preferences under the context with collaborative filtering recommendation technology to realize music recommendation based on context-awareness. [Conclusions] There are some problems existing in the study, such as the lack of systematic research on user behavior and demand, low level of feature extraction and single evaluation index. The future development directions of music recommendation will be discussed deeply from the angle of group music recommendation, Ontology modeling and context-aware music recommendation in the mobile environment.

Key wordsRecommender system      Music recommendation      Metadata Rough set      Context-awareness     
Received: 05 March 2014      Published: 20 October 2014
:  TP311  

Cite this article:

Tan Xueqing, He Shan. Research Review on Music Personalized Recommendation System. New Technology of Library and Information Service, 2014, 30(9): 22-32.

URL:     OR

[1] Campbel M E, Clune Iii J E, Hicken W T, et al. Music Recommendation System and Method: USA, WO 2005038666 A1[P]. 2004-08-13.
[2] Pachet F. Knowledge Management and Musical Metadata [A]//Schwartz D. Encyclopedia of Knowledge Management [M]. Idea Group, 2005.
[3] Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating “Word of Mouth”[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, USA: ACM, 1995:210-217.
[4] Lee S. A Generic Graph-Based Multidimensional Recommendation Framework and Its Implementations[C]. In: Proceedings of the 21st International Conference Companion on World Wide Web. ACM, 2012: 161-166.
[5] Yoshii K, Goto M, Komatani K, et al. Hybrid Collaborative and Content-Based Music Recommendation Using Probabilistic Model with Latent User Preferences [C]. In: Proceedings of the International Conference on Music Information Retrieval. 2006.
[6] Liu Z, Wang Y, Chen T. Audio Feature Extraction and Analysis for Scene Segmentation and Classification [J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 1998, 20(1-2): 61-79.
[7] Li S Z. Content-Based Audio Classification and Retrieval Using the Nearest Feature Line Method [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 619-625.
[8] Gouyon F, Pachet F, Delerue O. On the Use of Zero-Crossing Rate for an Application of Classification of Percussive Sounds[C]. In: Proceedings of the COST-G6 Conference on Digital Audio Effects(DAFX-00), Verona, Italy. 2000.
[9] 王金明, 张雄伟. 话者识别系统中语音特征参数的研究与仿真[J]. 系统仿真学报, 2003, 15(9): 1276-1278. (Wang Jinming, Zhang Xiongwei. Study and Simulation of the Acoustic Features in Speaker Recognition System [J]. Journal of System Simulation, 2003,15(9): 1276-1278.)
[10] Cano P, Koppenberger M, Wack N. An Industrial-Strength Content-Based Music Recommendation System [C]. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2005: 673.
[11] Pohle T, Pampalk E, Widmer G. Generating Similarity-Based Playlists Using Traveling Salesman Algorithms [C]. In: Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05). 2005: 220-225.
[12] Kuo F F, Shan M K. A Personalized Music Filtering System Based on Melody Style Classification [C]. In: Proceedings of the 2002 IEEE International Conference on Data Mining. IEEE Conference Publication, 2002:649-652.
[13] Vignoli F, Pauws S. A Music Retrieval System Based on User-Driven Similarity and Its Evaluation[C]. In: Proceedings of International Symposium on Music Information Retrieval. 2005: 272-279.
[14] Sotiropoulos D N, Lampropoulos A S, Tsihrintzis G A. MUSIPER: A System for Modeling Music Similarity Perception Based on Objective Feature Subset Selection [J]. User Modeling User-Adapted Interaction, 2008, 18(4): 315-348.
[15] Shao B, Wang D, Li T, et al. Music Recommendation Based on Acoustic Features and User Access Patterns[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009, 17(8): 1602-1611.
[16] Bogdanov D, Haro M, Fuhrmann F, et al. Semantic Audio Content-Based Music Recommendation and Visualization Based on User Preference Examples [J]. Information Processing and Management, 2013, 49(1): 13-33.
[17] Aucouturier J J, Pachet F. Music Similarity Measures: What's the Use?[C]. In: Proceedings of the 3rd International Conference on Music Information Retrieval (IS-MIR2002). 2002: 157-163.
[18] Donaldson J. A Hybrid Social-Acoustic Recommendation System for Popular Music[C]. In: Proceedings of the 2007 ACM Conference on Recommender Systems. ACM, 2007: 187-190.
[19] 牛滨, 孔令志, 罗森林, 等. 基于 MFCC 和 GMM 的个性音乐推荐模型[J]. 北京理工大学学报, 2009, 29(4): 351-355. (Niu Bin, Kong Lingzhi, Luo Senlin, et al. Individuality Music Recommendation Model Based on MFCC and GMM [J]. Transactions of Beijing Institute of Technology, 2009, 29(4): 351-355.)
[20] 孔旭, 关佶红. 以声谱图相似度为度量的波形音乐检索[J]. 计算机工程与应用, 2009, 45(13): 136-141. (Kong Xu, Guan Jihong. Audio Format Music Retrieval Based on Spectrogram Similarity [J]. Computer Engineering and Applications, 2009, 45(13): 136-141.)
[21] 刘亚多, 李伟, 李晓强, 等.压缩域鲁棒音乐指纹算法研究[J]. 电子学报, 2010, 38(5): 1172-1176. (Li Yaduo, Li Wei, Li Xiaoqiang, et al. A Robust Compressed-Domain Music Fingerprinting Technique Based on MDCT Spectral Entropy [J]. Acta Electronica Sinica, 2010, 38(5): 1172-1176.)
[22] 张燕, 唐振民, 李燕萍. 面向推荐系统的音乐特征抽取[J]. 计算机工程与应用, 2011, 47(5): 130-133. (Zhang Yan, Tang Zhenmin, Li Yanping. Music Feature Extraction Method for Recommendation System [J]. Computer Engineering and Applications, 2011, 47(5): 130-133.)
[23] Lee J H, Downie J S. Survey of Music Information Needs, Uses, and Seeking Behaviours: Preliminary Findings [C]. In: Proceedings of the International Society for Music Information Retrieval. 2004: 441-446.
[24] Datta D. Managing Metadata [C]. In: Proceedings of the International Conference on Music Information Retrieval. 2002.
[25] Swartz A. MusicBrainz: A Semantic Web Service [J]. IEEE Intelligent Systems, 2002, 17(1): 76-77.
[26] Joyce J. Pandora and the Music Genome Project [J]. Scientific Computing, 2006, 23(10): 40-41.
[27] Anderson N. Making Money Selling Music Without DRM: The Rise of eMusic [EB/OL]. (2006-09-04). [2014-02-12].
[28] Pachet F, Burthe A L, Zils A, et al. Popular Music Access: The Sony Music Browser [J]. Journal of the American Society for Information Science and Technology, 2004, 55(12): 1037-1044.
[29] Schedl M, Liem C C S, Peeters G, et al. A Professionally Annotated and Enriched Multimodal Data Set on Popular Music[C]. In: Proceedings of the 4th ACM Multimedia Systems Conference. ACM, 2013: 78-83.
[30] Chen H C, Chen A L P. A Music Recommendation System Based on Music Data Grouping and User Interests [C]. In: Proceedings of the 10th ACM CIKM International Conference on Information and Knowledge Management. 2001, 1: 231-238.
[31] Pachet F, Aucouturier J J, Burthe A L, et al. The Cuidado Music Browser: An End-to-End Electronic Music Distribution System [J]. Multimedia Tools and Applications, 2006, 33(1): 331-349.
[32] Celma Ò. Foafing the Music: Bridging the Semantic Gap in Music Recommendation[A]//The Semantic Web-ISWC 2006 [C]. Springer Berlin Heidelberg, 2006: 927-934.
[33] Pachet F, Westermann G, Laigre D. Musical Data Mining for Electronic Music Distribution [C]. In: Proceedings of the 1st International Conference on Web Delivering of Music, 2001: 101-106.
[34] Cohen W W, Fan W. Web-Collaborative Filtering: Recomme-nding Music by Crawling the Web [J]. Computer Networks, 2000, 33(1): 685-698.
[35] Whitman B, Lawrence S. Inferring Descriptions and Similarity for Music from Community Metadata [C]. In: Proceedings of the 2002 International Computer Music Conference, 2002: 591-598.
[36] Baumann S, Hummel O. Enhancing Music Recommendation Algorithms Using Cultural Metadata [J]. Journal of New Music Research, 2005, 34(2): 161-172.
[37] Zadel M, Fujinaga I. Web Services for Music Information Retrieval [C]. In: Proceedings of the 5th International Conference on Music Information Retrieval. 2004.
[38] Knees P, Pampalk E, Widmer G. Artist Classification with Web-Based Data [C]. In: Proceedings of the 5th International Symposium on Music Information Retrieval. 2004.
[39] Kaji K, Hirata K, Nagao K. A Music Recommendation System Based on Annotations about Listeners' Preferences and Situations [C]. In: Proceedings of the 1st International Confernce on Automated Production of Cross Media Content for Multi-Channel Distribution. 2005.
[40] Mandel M, Ellis D. A Web-Based Game for Collecting Music Metadata [J]. Journal of New Music Research, 2008, 37(2): 151-165.
[41] Olivier H, Waselewsky M, Pinkwart N. MusicTagger: Exploiting User Generated Game Data for Music Recommendation [A]// Human-Computer Interaction. Users and Applications [M]. Springer Berlin Heidelberg, 2011: 678-687.
[42] Baccigalupo C, Plaza E. Poolcasting: A Social Web Radio Architecture for Group Customisation [C]. In: Proceedings of the 3rd International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution. IEEE Computer Society, 2007: 115-122.
[43] Schedl M, Hauger D. Mining Microblogs to Infer Music Artist Similarity and Cultural Listening Patterns [C]. In: Proceedings of the 4th International Workshop on Advances in Music Information Research. 2012: 877-886.
[44] Tan S, Bu J, Chen C, et al. Using Rich Social Media Information for Music Recommendation via Hypergraph Model [A]// Social Media Modeling and Computing [M]. London: Springer, 2011: 213-237.
[45] Tso-Sutter K H L, Marinho L B, Thieme L S. Tag-Aware Recommender Systems by Fusion of Collaborative Filtering Algorithms [C]. In: Proceedings of the 2008 ACM Symposium on Applied Computing. ACM, 2008: 1995-1999.
[46] Nanopoulos A, Rafailidis D, Symeonidis P, et al. MusicBox: Personalized Music Recommendation Based on Cubic Analysis of Social Tags [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(2): 407-412.
[47] Kim H H. A Semantically Enhanced Tag-Based Music Recommendation Using Emotion Ontology [A]// Intelligent Information and Database Systems [M]. Springer Berlin Heidelberg, 2013: 119-128.
[48] 徐淮杰, 张二芬. 基于关联规则与奇异值分解的音乐推荐系统[J]. 电子设计工程, 2013, 21(1): 17-19. (Xu Huaijie, Zhang Erfen. Music Recommender System Based on Association Rules and Singular Value Decomposition [J]. Electronic Design Engineering, 2013, 21(1): 17-19.)
[49] Baumann S, Hummel O. Using Cultural Metadata for Artist Recommendations [C]. In: Proceedings of the 3rd International Conference on Web Delivering of Music. 2003: 138-141.
[50] Crossen A, Budzik J, Hammond K J. Flytrap: Intelligent Group Music Recommendation [C]. In: Proceedings of the 7th International Conference on Intelligent User Interfaces. ACM, 2002: 184-185.
[51] Jameson A, Smyth B. Recommendation to Groups[A]//The Adaptive Web [M]. Springer Berlin Heidelberg, 2007: 596-627.
[52] 陈雅茜. 公共环境下的混合型音乐推荐系统的关键技术研究[J]. 计算机应用研究, 2012, 29(11): 4250-4253. (Chen Yaxi. Hybrid Music Recommender System in Public Environment [J]. Application Research of Computers, 2012, 29(11): 4250-4253.)
[53] Popescu G, Pu P. What's the Best Music You Have?: Designing Music Recommendation for Group Enjoyment in GroupFun [C]. In: Proceedings of the 2012 ACM Annual Conference Extended Abstract on Human Factors in Computing Systems Extended Abstract. ACM, 2012: 1673-1678.
[54] Raimond Y, Abdallah A S, Sandler M, et al. The Music Ontology [C]. In: Proceedings of the 8th International Conference on Music Information Retrieval. 2007: 417-422.
[55] Han B J, Rho S, Jun S, et al. Music Emotion Classification and Context-Based Music Recommendation [J]. Multimedia Tools and Applications, 2010, 47(3): 433-460.
[56] Rho S, Song S, Hwang E, et al. COMUS: Ontological and Rule-Based Reasoning for Music Recommendation System [A]//Advances in Knowledge Discovery and Data Mining [M]. Springer Berlin Heidelberg, 2009: 859-866.
[57] Zhou T, Kuscsik Z, Liu J G, et al. Solving the Apparent Diversity-Accuracy Dilemma of Recommender Systems [J]. Proceedings of the National Academy of Sciences of the United State of America, 2010, 107(10): 4511-4515.
[58] Shani G, Gunawardana A. Evaluating Recommendation Systems [A]// Recommender Systems Handbook [M]. Springer US, 2011: 257-297.
[59] Celma Ò. Music Recommendation [A]// Music Recommen-dation and Discovery [M]. Springer Berlin Heidelberg, 2010: 43-85.
[60] Hurley N, Zhang M. Novelty and Diversity in Top-N Recommendation—Analysis and Evaluation [J]. ACM Transactions on Internet Technology, 2011, 10(4): Article No.14.
[61] Murakami T, Mori K, Orihara R. Metrics for Evaluating the Serendipity of Recommendation Lists [A]// New Frontiers in Artificial Intelligence [M]. Springer Berlin Heidelberg, 2008: 40-46.
[62] Murakami T, Mori K, Orihara R. A Method to Enhance Serendipity in Recommendation and Its Evaluation [J]. Transactions of the Japanese Society for Artificial Intelligence, 2009, 24(5): 428-436.
[63] Zhang Y C, Séaghdha D Ó, Quercia D, et al. Auralist: Introducing Serendipity into Music Recommendation [C]. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012:13-22..
[64] Adomavicius G, Tuzhilin A. Context-Aware Recommender Systems [A]// Recommender Systems Handbook [M]. Springer US, 2011: 217-253.
[65] Wang X, Rosenblum D, Wang Y. Context-Aware Mobile Music Recommendation for Daily Activities [C]. In: Proceedings of the 20th ACM International Conference on Multimedia. ACM, 2012: 99-108.
[66] Braunhofer M, Kaminskas M, Ricci F. Location-Aware Music Recommendation [J]. International Journal of Multimedia Information Retrieval, 2013, 2(1): 31-44.

[1] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
[2] Yu Shuo,Hayat Dino Bedru,Chu Xinbei,Yuan Yuyuan,Wan Liangtian,Xia Feng. Understanding Serendipity in Science: A Survey[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
[3] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[4] Liu Dan. Personalized Book Recommender Service Deployment Using Apache Mahout[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[5] Xue Fuliang, Zhang Huiying. A Research of Collaborative Filtering Recommender Method Based on SOM and RBFN Filling Missing Values[J]. 现代图书情报技术, 2014, 30(7): 56-63.
[6] Jiang Shuhao, Xue Fuliang. An Improved Content-based Recommendation Method Through Collaborative Predictions and Fuzzy Similarity Measures[J]. 现代图书情报技术, 2014, 30(2): 41-47.
[7] Hu Xinming, Luo Jianjun, Xia Huosong. Research on Interactive Recommender System Based on Commodity Domain Knowledge[J]. 现代图书情报技术, 2014, 30(10): 56-62.
[8] Zhang Huiying, Xue Fuliang. An Improved Collaborative Filtering Recommendation Algorithm Based on Vague Sets Theory[J]. 现代图书情报技术, 2012, 28(3): 35-39.
[9] Zhang Huiying, Xue Fuliang. An Integrated Recommender Method Based on CLV and Collaborative Filtering[J]. 现代图书情报技术, 2012, 28(1): 46-52.
[10] Li Cong. Review of Scalability Problem in E-commerce Collaborative Filtering[J]. 现代图书情报技术, 2010, 26(11): 37-41.
[11] Wang Hongyu,Zhao Ying,Dang Yuewu. Design of an E-commerce Recommender System Based on Hybrid Algorithm[J]. 现代图书情报技术, 2009, 3(1): 80-85.
[12] Ma Wenfeng,Gao Fengrong,Wang Shan. On State Personal Information Service Recommender System in Digital Library[J]. 现代图书情报技术, 2003, 19(2): 16-18.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938