Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (12): 48-56    DOI: 10.11925/infotech.1003-3513.2015.12.08
Current Issue | Archive | Adv Search |
Sentiment Analysis of Web Reviews Based on Comparative Sentence Extraction
Peng Hao1, Xu Jian1, Xiao Zhuo2
1 School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China;
2 Libraries of Sun Yat-Sen University, Guangzhou 510275, China
Export: BibTeX | EndNote (RIS)      

[Objective] In order to select competitive products in the market and mine useful information for both enterprises and customers. [Methods] This paper proposes a model of sentiment analysis based on comparative sentence, which can compute feature scores of comparative products and visualize the comparative relations between these products. In order to verify the effectiveness of this model, an experiment on smart phones is conducted with the help of Baidu search engines. [Results] The experiment selects 9 pairs of competitive smart phone products from 28 pairs, thus the results can help smart phone enterprises identify competitors. And also visualize the comparative relations between these products and provide suggestions for customer purchase. [Limitations] The accuracy of feature extraction is not high. The recognition rate of comparative sentence in this model need improvements. [Conclusions] The result of this experiment is consistent with facts, which proves the effectiveness of this competitiveness analysis mothed presented in this paper and its great value to enterprises.

Received: 19 May 2015      Published: 06 April 2016
:  G350  

Cite this article:

Peng Hao, Xu Jian, Xiao Zhuo. Sentiment Analysis of Web Reviews Based on Comparative Sentence Extraction. New Technology of Library and Information Service, 2015, 31(12): 48-56.

URL:     OR

[1] 赵妍妍, 秦兵, 刘挺. 文本情感分析[J]. 软件学报, 2010, 21(8): 1834-1848. (Zhao Yanyan, Qin Bing, Liu Ting. Sentiment Analysis [J]. Journal of Software, 2010, 21(8): 1834-1848.)
[2] 周城. 面向中文Web评论的情感分析技术研究[D]. 长沙: 国防科学技术大学, 2011. (Zhou Cheng. Technology Research on Sentiment Analysis for Chinese Web Reviews [D]. Changsha: National University of Defense Technology, 2011.)
[3] 梅雪琦. 面向商品评论的情感分析分类研究[D]. 合肥: 合肥工业大学, 2012. (Mei Xueqi. Classification Research of Sentiment Analysis for Product Reviews [D]. Hefei: Hefei University of Technology, 2012.)
[4] 潘宇, 林鸿飞. 基于语义极性分析的餐馆评论挖掘[J]. 计算机工程, 2008, 34(17): 208-210. (Pan Yu, Lin Hongfei. Restaurant Reviews Mining Based on Semantic Polarity Analysis [J]. Computer Engineering, 2008, 34(17): 208-210.)
[5] 张丽. 在线评论的客户参与动机与评论有效性研究——基于中国大型B2C电子商务网站的实证分析[D]. 天津: 南开大学, 2011. (Zhang Li. Customer Participation Motivation and the Helpfulness of Online Review: Data from Chinese B2C Electronic Commerce Websites [D]. Tianjin: Nankai University, 2011.)
[6] 陈立孚, 周宁, 李丹. 基于机器学习的自动文本分类模型研究[J]. 现代图书情报技术, 2005(10): 23-27. (Chen Lifu, Zhou Ning, Li Dan. Study on Machine Learning Based Automatic Text Categorization Model [J]. New Technology of Library and Information Service, 2005(10): 23-27.)
[7] 魏慧玲. 文本情感分析在产品评论中的应用研究[D]. 北京: 北京交通大学, 2014. (Wei Huiling. Application Research of Text Sentiment Analysis in Product Reviews [D]. Beijing: Beijing Jiaotong University, 2014.)
[8] 汉语分词系统ICTCLAS [EB/OL]. [2014-05-02]. http:// (Institute of Computing Technology, Chinese Lexical Analysis System [EB/OL]. [2014-05-02]. http://
[9] Stanford Parser [EB/OL]. [2015-02-20]. http://nlp.stanford. edu/software/lex-parser.shtml.
[10] 卫力. 基于图的半监督中文句子主客观分类算法研究[D]. 北京: 北京邮电大学, 2011. (Wei Li. Graph-based Semi-supervised Learning for Chinese Opinion Sentence Recognition [D]. Beijing: Beijing University of Posts and Telecommunications, 2011.)
[11] 代大明, 王中卿, 李寿山, 等. 基于情绪词的非监督中文情感分类方法研究[J]. 中文信息学报, 2012, 26(4): 103-108. (Dai Daming, Wang Zhongqing, Li Shoushan, et al. Unsupervised Chinese Sentiment Classification with Emotion Words [J]. Journal of Chinese Information Processing, 2012, 26(4): 103-108.)
[12] 王小凤, 耿国华, 李鹏, 等. 一个基于相关反馈的神经网络音乐情感分类器构建算法[J]. 西北大学学报: 自然科学版, 2012, 42(1): 30-35. (Wang Xiaofeng, Geng Guohua, Li Peng, et al. A Music Emotion Classifier Construction Algorithm of Neural Network Based on Relevant Feedback [J]. Journal of Northwest University: Natural Science Edition, 2012, 42(1): 30-35.)
[13] Xu K, Liao S S, Li J, et al. Mining Comparative Opinions from Customer Reviews for Competitive Intelligence [J]. Decision Support Systems, 2011, 50(4): 743-754.
[14] 黄高辉, 姚天昉, 刘全升. 基于CRF算法的汉语比较句识别和关系抽取[J]. 计算机应用研究, 2010, 27(6): 2061-2064. (Huang Gaohui, Yao Tianfang, Liu Quansheng. Mining Chinese Comparative Sentences and Relations Based on CRF Algorithm [J]. Application Research of Computers, 2010, 27(6): 2061-2064.)
[15] 杜文韬. 基于条件随机场的中文比较句倾向性研究[D]. 济南: 山东师范大学, 2014. (Du Wentao. Studying of Emotional Tendency in Chinese Comparative Sentences Based on CRF Algorithm [D]. Ji'nan: Shandong Normal University, 2014.)
[16] 李建军. 比较句与比较关系识别研究及其应用[D]. 重庆: 重庆大学, 2011. (Li Jianjun. Research of Comparative Sentence and Comparative Relationship Recognition and Application [D]. Chongqing: Chongqing University, 2011.)
[17] 结巴分词组件[EB/OL]. [2015-04-10]. fxsjy/jieba. (Jieba Chinese Segmentation System [EB/OL]. [2015-04-10].

[1] Li Xiao, Qu Jiansheng. Review of Application and Evolution of Meta-Analysis in Social Sciences[J]. 数据分析与知识发现, 2021, 5(11): 1-12.
[2] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
[3] Chen Shiji, Qiu Junping, Yu Bo. Topic Analysis of LIS Big Data Research with Overlay Mapping[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[4] Zheng Xinman, Dong Yu. Constructing Degree Lexicon for STI Policy Texts[J]. 数据分析与知识发现, 2021, 5(10): 81-93.
[5] Wang Yan, Wang Huyan, Yu Bengong. Chinese Text Classification with Feature Fusion[J]. 数据分析与知识发现, 2021, 5(10): 1-14.
[6] Fan Shaoping,Zhao Yuxuan,An Xinying,Wu Qingqiang. Classification Model for Medical Entity Relations with Convolutional Neural Network[J]. 数据分析与知识发现, 2021, 5(9): 75-84.
[7] Xu Liangchen, Guo Chonghui. Predicting Survival Rates for Gastric Cancer Based on Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(8): 86-99.
[8] Xu Zengxulin, Xie Jing, Yu Qianqian. Designing New Evaluation Model for Talents[J]. 数据分析与知识发现, 2021, 5(8): 122-131.
[9] Zhang Jiandong, Chen Shiji, Xu Xiaoting, Zuo Wenge. Extracting PDF Tables Based on Word Vectors[J]. 数据分析与知识发现, 2021, 5(8): 34-44.
[10] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[11] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[12] Yue Mingliang,Li Fushan,Tang Hongbo,Lv Xinhua,Ma Tingcan. Evaluating Consistency of Scholarly Article Reviewers[J]. 数据分析与知识发现, 2021, 5(4): 115-122.
[13] Zhang Xin,Wen Yi,Xu Haiyun. A Prediction Model with Network Representation Learning and Topic Model for Author Collaboration[J]. 数据分析与知识发现, 2021, 5(3): 88-100.
[14] Zhang Jinzhu, Yu Wenqian. Topic Recognition and Key-Phrase Extraction with Phrase Representation Learning[J]. 数据分析与知识发现, 2021, 5(2): 50-60.
[15] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938