Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (6): 78-84    DOI: 10.11925/infotech.1003-3513.2015.06.12
Current Issue | Archive | Adv Search |
Detect of Internet Fake Public Opinion Based on Decision Tree
Zhao Jingxian
School of Economics and Management, Tianjin University of Science & Technology, Tianjin 300222, China
Export: BibTeX | EndNote (RIS)      

[Objective] A method to detect Internet fake public opinion based on combined optimization decision tree is proposed. [Methods] It gives three definitions of fake public opinion based on the analysis of characteristics, namely A, B and C. Evaluation index is constructed and decision tree is established by discretization, attributes selection of normalization input-output correlation value. [Results] The test on Matlab shows the model based on combined optimization decision tree has higher predict accuracy. [Limitations] The model and data focus on network media. The rise of mobile social software may change the features of fake public opinion which needs further improvement to the method. [Conclusions] The paper proposes a new method for intelligent multiple classification of fake public opinion.

Key wordsFake public opinion      Evaluation index      Data mining      Decision tree     
Received: 22 December 2014      Published: 08 July 2015
:  G202  

Cite this article:

Zhao Jingxian. Detect of Internet Fake Public Opinion Based on Decision Tree. New Technology of Library and Information Service, 2015, 31(6): 78-84.

URL:     OR

[1] 李兰玉. 网络伪舆情的成因及对策分析[J]. 人民论坛, 2013(17): 42-43. (Li Lanyu. The Reasons and Strategies for Internet Fake Public Opinion [J]. People's Tribune, 2013(17): 42-43.)
[2] 宋常青. “网络伪舆情”干扰政府决策[J]. 青年记者, 2010(6): 39. (Song Changqing. Raise Guard on Fake Internet Opinion Interfere with Government Decisions [J]. Youth Journalist, 2010(6): 39.)
[3] 刘勘, 朱怀萍, 胡航. 网络伪舆情的特征研究[J]. 情报杂志, 2011, 30(11): 57-60. (Liu Kan, Zhu Huaiping, Hu Hang. Study on Characteristics of Internet Fake Public Opinion[J]. Journal of Intelligence, 2011, 30(11): 57-60.)
[4] 方付建. 网络伪舆情的表现、成因与影响[J]. 电子政务, 2013(11): 23-28. (Fang Fujian. Manifestations, Causes and Effects of Fake Internet Opinion [J]. E-Government, 2013(11): 23-28.)
[5] 孟美任, 丁晟春. 在线中文商品评论可信度研究[J]. 现代图书情报技术, 2013(9): 60-66. (Meng Meiren, Ding Shengchun. Research on the Credibility of Online Chinese Product Reviews [J]. New Technology of Library and Information Service, 2013(9): 60-66.)
[6] 陈燕方, 李志宇. 基于评论产品属性情感倾向评估的虚假评论识别研究[J]. 现代图书情报技术, 2014(9): 81-90. (Chen Yanfang, Li Zhiyu. Research on Product Review Attribute-Based of Emotion Evaluate Review Spam Detection [J]. New Technology of Library and Information Service, 2014(9): 81-90.)
[7] 刘勘, 朱怀萍, 刘秀芹. 基于支持向量机的网络伪舆情识别研究[J]. 现代图书情报技术, 2013(11): 75-80. (Liu Kan, Zhu Huaiping, Liu Xiuqin. Detection of Internet Deceptive Opinion Based on SVM [J]. New Technology of Library and Information Service, 2013(11): 75-80.)
[8] 杨永军. 社会舆情监测与预警的指标体系研究[J]. 现代传播, 2014(9): 63-71. (Yang Yongjun. Research on Index System of Social Public Opinion Monitoring and Early Warning [J]. Modern Communication, 2014(9): 63-71.)
[9] 冯江平, 张月, 赵舒贞, 等. 网络舆情评价指标体系的构建与应用[J].云南师范大学学报: 哲学社会科学版, 2014, 46(2): 75-84. (Feng Jiangping, Zhang Yue, Zhao Shuzhen, et al. Construction and Application of the Evaluation System of Internet Public Opinion [J]. Journal of Yunnan Normal University: Humaitles and Social Sciences, 2014, 46(2): 75-84.)
[10] 孙玲芳, 周加波, 林伟健, 等. 基于BP神经网络和遗传算法的网络舆情危机预警研究[J]. 情报杂志, 2014, 33(11): 18-24. (Sun Lingfang, Zhou Jiabo, Lin Weijian, et al. On Network Public Opinion Crisis Early Warning Based on the BP Neural Network and Genetic Algorithm [J]. Journal of Intelligence, 2014, 33(11): 18-24.)
[11] 赵静娴, 倪春鹏, 詹原瑞, 等. 一种大规模数据库的组合优化决策树算法[J]. 系统工程与电子技术, 2009, 31(3): 583-587. (Zhao Jingxian, Ni Chunpeng, Zhan Yuanrui, et al. Combined Optimization Decision Tree Algorithm Suitable for Large Scale Data-base [J]. Systems Engineering and Electronics, 2009, 31(3): 583-587.)
[12] 赵静娴, 倪春鹏, 詹原瑞, 等. 一种高效的连续属性离散化算法[J]. 系统工程与电子技术, 2009, 31(1):195-199. (Zhao Jingxian, Ni Chunpeng, Zhan Yuanrui, et al. Efficient Discretization Algorithm for Continuous Attributes [J]. Systems Engineering and Electronics, 2009, 31(1): 195-199.)
[13] Ching J Y, Wong A K C, Chan K C C. Class-dependent Discretization for Inductive Learning from Continuous and Mixed-mode Data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(7): 641-651.

[1] Xie Wang, Wang Lizhen, Chen Hongmei, Zeng Lanqing. Identifying Relationship Between Pollution Sources and Cancer Cases with Spatial Ordered Pair Patterns[J]. 数据分析与知识发现, 2021, 5(2): 14-31.
[2] Chen Hao, Zhang Mengyi, Cheng Xiufeng. Identifying Cross-Region Patent Collaboration Opportunities Using LDA and Decision Trees——Case Study of Universities from Guangdong and Wuhan[J]. 数据分析与知识发现, 2021, 5(10): 37-50.
[3] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[4] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[5] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[6] Cheng Xiufeng,Zhang Xinyi,Wang Ning. Identifying Trending Topics in Q&A Community with CART Decision Tree[J]. 数据分析与知识发现, 2018, 2(12): 52-59.
[7] Fan Xinyue,Cui Lei. Predicting Antineoplastic Drug Targets Based on Network Properties[J]. 数据分析与知识发现, 2018, 2(12): 98-108.
[8] Li Yongnan. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[9] Mu Dongmei,Wang Ping,Zhao Danning. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[10] Hu Zhongyi,Wang Chaoqun,Wu Jiang. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[11] Jiang Siwei,Xie Zhenping,Chen Meijie,Cai Ming. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[12] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[13] Li Feng,Li Shu’ning,Yu Jing. A Department Oriented Library Usage Data System for Graduates[J]. 现代图书情报技术, 2016, 32(5): 99-103.
[14] Yang Yang,Lin Hui,Hu Guangwei. Detecting Investment Risks of Photovoltaic Projects with Big Data: Case Study of[J]. 现代图书情报技术, 2016, 32(11): 11-19.
[15] He Jianmin, Wang Zhe. The Pedigree Method to Mine Influential Clusters of Topic Information in Social Network[J]. 现代图书情报技术, 2015, 31(5): 65-72.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938