Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (2): 1-12    DOI: 10.11925/infotech.2096-3467.2018.0747
Current Issue | Archive | Adv Search |
Exploring User Mental Models of Online Music Classification System: Case Study of College Students
Xiang Xue,Yuxiang Zhao()
School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094, China
Download: PDF (963 KB)   HTML ( 6
Export: BibTeX | EndNote (RIS)      

[Objective] This paper explores the classification system of online music platform from the perspective of user experience, aiming to optimize music classification and retrieval functions. [Methods] Based on the mental model theory, we chose Wangyi Yun Music as the experimental platform, and invited college students as participants. Then, we conducted two rounds of experiments to investigate the static structure of user mental model for music information interactions. [Results] We obtained multi-level, single-level and hybrid user mental models by clustering the experimental results. [Limitations] Due to the sample size and age issues, our results might not be representative. We did not examine the impacts of geographical and cultural factors on user mental models. [Conclusions] The study provides theoretical foundation and practical guidance for us to optimize music retrieval and user experience.

Key wordsMusic Information Behavior      Music Classification      Mental Model      Human Information Interaction     
Received: 10 July 2018      Published: 27 March 2019

Cite this article:

Xiang Xue,Yuxiang Zhao. Exploring User Mental Models of Online Music Classification System: Case Study of College Students. Data Analysis and Knowledge Discovery, 2019, 3(2): 1-12.

URL:     OR

[1] 中国互联网络信息中心. 第41次《中国互联网络发展状况统计报告》[R]. 北京: 中国互联网络信息中心, 2018.
[1] (China Internet Information Center. The 41st “Statistics Report on the Development of China Internet Network” [R]. Beijing: China Internet Information Center, 2018.)
[2] Lee J H, Cho H, Kim Y S.Users’ Music Information Needs and Behaviors: Design Implications for Music Information Retrieval Systems[J]. Journal of the Association for Information Science & Technology, 2016, 67(6): 1301-1330.
[3] 邓胜利, 胡雨薇. 国外用户音乐信息行为研究述评[J]. 情报科学, 2017, 35(10): 7-12.
[3] (Deng Shengli, Hu Yuwei.A Review of Users’ Music Information Behavior Abroad[J]. Information Science, 2017, 35(10): 7-12.)
[4] 李丰, 周维彬. 国外音乐信息检索可视化研究综述[J]. 情报探索, 2010(12): 103-106.
[4] (Li Feng, Zhou Weibin.Summary of Research on Visualization of Foreign Music Information Retrieval[J]. Information Research, 2010(12): 103-106.)
[5] Weigl D M, Guastavino C.User Studies in the Music Information Retrieval Literature[C]// Proceedings of the 12th International Society for Music Information Retrieval Conference. 2011: 335-340.
[6] Downie J S, Cunningham S J.Toward a Theory of Music Information Retrieval Queries: System Design Implications[C]// Proceedings of the 3rd International Conference on Music Information Retrieval. 2002: 299-300.
[7] Lee J H, Downie J S.Survey of Music Information Needs, Uses, and Seeking Behaviors: Preliminary Findings[C]// Proceedings of the 5th International Conference on Music Information Retrieval. 2004: 441-446.
[8] Hu X, Lee J, Wong L.Music Information Behaviors and System Preferences of University Students in Hong Kong[C]// Proceedings of the 15th International Society for Music Information Retrieval Conference. 2014: 579-584.
[9] Taheripanah S, Macfarlane A.Music Information Retrieval Systems: Why do Individuals Use Them and What are Their Needs?[C]// Proceedings of the 5th International Conference on Music Information Retrieval. 2004.
[10] Kim J Y, Belkin N J.Categories of Music Description and Search Terms and Phrases Used by Non-Music Experts[C]// Proceedings of the 3rd International Conference on Music Information Retrieval. 2002.
[11] Laplante A, Downie J S.The Utilitarian and Hedonic Outcomes of Music Information-Seeking in Everyday Life[J]. Library & Information Science Research, 2011, 33(3): 202-210.
[12] Lee J H, Price R.Understanding Users of Commercial Music Services Through Personas[C]// Proceedings of the 16th International Society for Music Information Retrieval Conference. 2015: 476-482.
[13] Lee J H, Downie J S, Cunningham S J.Challenges in Cross-Cultural/Multilingual Music Information Seeking[C]// Proceedings of the 6th International Conference on Music Information Retrieval. 2005: 11-15.
[14] Lee J H, Downie J S, Jones M C.Preliminary Analyses of Information Features Provided by Users for Identifying Music[C]// Proceedings of the 8th International Conference on Music Information Retrieval. 2007: 23-27.
[15] Casey M A, Veltkamp R, Goto M, et al.Content-Based Music Information Retrieval: Current Directions and Future Challenges[J]. Proceedings of the IEEE, 2008, 96(4): 668-696.
[16] Laplante A, Downie J S.Everyday Life Music Information-Seeking Behavior of Young Adults[C]// Proceedings of the International Conference on Music Information Retrieval. 2006: 8-12.
[17] Li T, Ogihara M, Li Q.A Comparative Study on Content-Based Music Genre Classification[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2003: 282-289.
[18] Lidy T, Rauber A.Evaluation of Feature Extractors and Psycho-acoustic Transformations for Music Genre Classification[C]// Proceedings of the 6th International Conference on Music Information Retrieval. 2005: 34-41.
[19] 查美丽. 基于情感的音乐分类系统的研究与实现[D]. 南京: 南京邮电大学, 2014.
[19] (Zha Meili.A Study on Music Emotion Classification[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2014.)
[20] Marques J, Moreno P J.A Study of Musical Instrument Classification Using Gaussian Mixture Models and Support Vector Machines[R]. CRL Technical Report Series, 1999.
[21] Agostini G, Longari M, Pollastri E.Musical Instrument Timbres Classification with Spectral Features[J]. EURASIP Journal on Applied Signal Processing, 2003: 5-14.
[22] Essid S, Richard G, David B.Instrument Recognition in Polyphonic Music Based on Automatic Taxonomies[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2005, 14(1): 68-80.
[23] Slaney M.Semantic-audio Retrieval[C]// Proceedings of IEEE International Conference on Acoustics. 2002.
[24] Wang F, Wang X, Shao B, et al.Tag Integrated Multi-Label Music Style Classification with Hyper Graph[C]// Proceedings of the 10th International Society for Music Information Retrieval Conference. 2009: 363-368.
[25] Craik K W.The Nature of Explanation[M]. Cambridge UK: Cambridge University Press, 1943: 51-54.
[26] 宋琳琳, 李海涛. 近二十年来网络用户心智模型研究综述[J]. 大学图书情报学刊, 2016, 34(2): 100-112.
[26] (Song Linlin, Li Haitao.Comprehensive Research on the Mental Model of Network Users in the Past Twenty Years[J]. Journal of Academic Library and Information Science, 2016, 34(2): 100-112.)
[27] 唐纳德·A·诺曼. 设计心理学[M]. 梅琼译. 北京: 中信出版社, 2003: 16-18.
[27] (Norman D A.The Design of Everyday Things [M]. Translated by Mei Qiong. Beijing: CITIC Press, 2003: 16-18.)
[28] Zhang Y.The Influence of Mental Models on Undergraduate Students’ Searching Behavior on the Web[J]. Information Processing & Management, 2008, 44(3): 1330-1345.
[29] Borgman C L, Smart L J, Millwood K A, et al.Comparing Faculty Information Seeking in Teaching and Research: Implications for the Design of Digital Libraries: Research Articles[J]. Journal of the American Society for Information Science & Technology, 2005, 56(6): 636-657.
[30] Kim K S.Information-seeking on the Web: Effects of User and Task Variables[J]. Library & Information Science Research, 2001, 23(3): 233-255.
[31] 吴鹏. 应用认知科学研究网络用户信息行为[N]. 中国社会科学报, 2013-04-08(A08).
[31] (Wu Peng. Using Cognitive Science to Study Information Behavior of Network Users[N]. Chinese Social Sciences News, 2013-04-08(A08).)
[32] 吴鹏, 张佩佩, 甘利人. 网站用户信息获取中的心智模型研究[J]. 情报学报, 2011, 30(9): 935-945.
[33] (Wu Peng, Zhang Peipei, Gan Liren.Research on the Mental Model for Website Users in the Process of Information Access[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(9): 935-945.)
[34] 韩正彪, 韩正芝. 文献数据库用户心智模型演进驱动因素结构测量研究[J]. 图书情报工作, 2017, 61(15): 111-119.
[35] (Han Zhengbiao, Han Zhengzhi.A Study on Measuring the Driving Factor Structure of Academic Database Users’ Mental Model Evolution[J]. Library and Information Service, 2017, 61(15): 111-119.)
[36] 王黎萤, 陈劲. 研发团队创造力的影响机制研究——以团队共享心智模型为中介[J]. 科学学研究, 2010, 28(3): 420-428.
[36] (Wang Liying, Chen Jin.A Study on Influencing Mechanism of R&D Team Creativity——The Mediating Role of Team Shared Mental Model[J]. Studies in Science of Science, 2010, 28(3): 420-428.)
[37] 季晓芬. 团队沟通对团队知识共享的作用机制研究[D]. 杭州: 浙江大学, 2008.
[37] (Ji Xiaofen.Study on the Mechanism of Team Communication on Team Knowledge Sharing[D]. Hangzhou: Zhejiang University, 2008.)
[38] 武欣, 吴志明. 团队共享心智模型的影响因素与效果[J]. 心理学报, 2005, 37(4): 542-549.
[38] (Wu Xin, Wu Zhiming.Antecedents and Consequences of Shared Mental Model in Work Teams[J]. Acta Psychologica Sinica, 2005, 37(4): 542-549.)
[39] 林一, 陈靖, 刘越, 等. 基于心智模型的虚拟现实与增强现实混合式移动导览系统的用户体验设计[J].计算机学报, 2015, 38(2): 408-422.
[39] (Lin Yi, Chen Jing, Liu Yue, et al.User Experience Design of VR-AR Hybrid Mobile Browsing System Based on Mental Model[J]. Chinese Journal of Computers, 2015, 38(2): 408-422.)
[40] 钱敏. 面向网站商品分类目录的用户心智模型测量研究[D]. 南京: 南京理工大学, 2015.
[40] (Qian Min.A Study on the Measurement of Users’ Mental Model for Website Product Catalog[D]. Nanjing: Nanjing University of Science & Technology, 2015.)
[41] 朱晶晶. 电子商务网站分类体系理解的用户心智模型研究[D]. 南京: 南京理工大学, 2010.
[41] (Zhu Jingjing.A Study on the Userundefineds Mental Model of Understanding the Classification System of Electronic Commerce Websites[D]. Nanjing: Nanjing University of Science & Technology, 2010.)
[42] 钱敏, 朱晶晶, 张红. 大学生用户心智模型测量研究[J]. 情报科学, 2011, 29(5): 752-756, 762.
[42] (Qian Min, Zhu Jingjing, Zhang Hong.An Investigation on Measuring Undergraduates Mental Models[J]. Information Science, 2011, 29(5): 752-756, 762.)
[43] Goldsmith T E, Johnson P J, Acton W H.Assessing Structural Knowledge[J]. Journal of Educational Psychology, 1991, 83(1): 88-96.
[44] McClure J R, Sonak B, Suen H K. Concept Map Assessment of Classroom Learning: Reliability, Validity, and Logistical Practicality[J]. Journal of Research in Science Teaching, 1999, 36(4): 475-492.
[45] Ruiz-Primo M A, Schultz S E, Li M, et al. Comparison of the Reliability and Validity of Scores from Two Concept-mapping Techniques[J]. Journal of Research in Science Teaching, 2001, 38(2): 260-278.
[46] Novak J D, Gowin D B, Kahle J B.Learning How to Learn [M]. Cambridge University Press, 1984.
[47] Kuhlthau C C, Belvin R J, Geogre M W.Flowcharting the Information Search: A Method for Eliciting Users Mental Maps[C]//Proceedings of the ASIS Annual Meeting. 1989, 26: 162-165.
[48] 现代快报. 网友评《最炫民族风》: 有自己风格大俗即大雅[EB/OL]. [2018-03-05]. .
[48] (Modern Express. Netizens Comment on “Zui Xuan Min Zu Feng”: It Has Its Own Style of Vulgarity[EB/OL]. [2018-03-05].
[49] Billboard Radio China. 2016年度10佳金曲[EB/OL]. [2018-03-05]. .
[49] (Billboard Radio China. Top Ten Songs of 2016[EB/OL]. [2018-03-05].
[50] 新华网. 网易云音乐用户数突破4亿宣布与KKBOX达成战略合作[EB/OL]. [2018-03-06]. .
[50] (Xinhua Net. Wangyi Cloud Music Users Exceeded 400 Million, It Announced a Strategic Cooperation with KKBOX. [EB/OL]. [2018-03-06].
[51] 艾瑞咨询. 中国数字音乐消费研究报告2018年[R]. 艾瑞咨询系列研究报告, 2018.
[51] (iResearch. Research Report on China’s Digital Music Consumption 2018 [R]. iiMedia Series Research Report, 2018.)
[1] Meng Zhen,Wang Hao,Yu Wei,Deng Sanhong,Zhang Baolong. Vocal Music Classification Based on Multi-category Feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 59-70.
[2] Qiang Shaohua, Wu Peng. The Research of Spatial Measure of Users' Mental Model of Website Category from the View of Regional Differences[J]. 现代图书情报技术, 2015, 31(11): 68-74.
[3] Shi Liping, Yuan Jingting, Tang Shulin, Liu Qiang. Role Mechanism of Internal Control Mechanism and Shared Mental Model on Knowledge Sharing: The Perspectives of Extending Knowledge Sharing Achievement Paths[J]. 现代图书情报技术, 2013, 29(11): 40-45.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938