Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (8): 20-30    DOI: 10.11925/infotech.2096-3467.2021.1233
Current Issue | Archive | Adv Search |
Influencing Factors of Patent Examination Cycle: Case Study of Artificial Intelligence in China
Ou Guiyan1,Pang Na2,Wu Jiang1()
1School of Information Management, Wuhan University, Wuhan 430072, China
2Department of Information Management, Peking University, Beijing 100871, China
Download: PDF (1139 KB)   HTML ( 17
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper examines the factors and mechanism affecting the patent examination cycle in China. [Methods] We retrieved 78 254 invention patent applications in the field of artificial intelligence in China. Then, we used the Kaplan-Meier method in survival analysis and the COX proportional hazard regression model to explore the overview of patent examination. Third, we analyzed the characteristics of patent objects and subjects based on their characteristics, which explored the factors significantly affecting the patent examination cycles. [Results] In the field of artificial intelligence, the average survival period of the overall Chinese invention patent examination process was 32.81 months. The number of claims, the number of IPC classification IDs, and the number of inventors were the protective factors of the patent examination cycle and promoted its extension. The more patent citations, the shorter the time will be required to obtain authorization. Universities and scientific research institutions, as well as institutions and organizations, spent shorter time on patent examination than individuals. Patent applications from companies required longer examination cycles. [Limitations] The patent examination cycle is closely related to the examination process of the patent office and the examiners’ characteristics, which needs more fine-grained studies. [Conclusions] Combining different technical fields and the characteristics of the applicants will establish a diversified examination mode. Strengthening the use of automated technology and establishing better classification standards will improve the patent examination efficiency.

Key wordsPatent Examination Cycle      Survival Analysis      Artificial Intelligence     
Received: 27 October 2021      Published: 23 September 2022
ZTFLH:  G251  
Fund:Key Projects of Philosophy and Social Sciences Research, Ministry of Education(20JZD024)
Corresponding Authors: Wu Jiang,ORCID:0000-0001-5153-5871     E-mail: jiangw@whu.edu.cn

Cite this article:

Ou Guiyan, Pang Na, Wu Jiang. Influencing Factors of Patent Examination Cycle: Case Study of Artificial Intelligence in China. Data Analysis and Knowledge Discovery, 2022, 6(8): 20-30.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2021.1233     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2022/V6/I8/20

Patent Development Trends in the Field of Artificial Intelligence in China
类别 关键词
中文 人工智能、机器学习、深度学习、自然语言处理、计算机视觉、图像识别、语音识别、人脸识别、模糊逻辑、逻辑程序设计、概率推理、神经网络、本体工程、专家系统、智能系统、语音处理、知识表示和推理、计划与调度、智能机器人、视频识别、手势控制、自动驾驶、虚拟助手、预测分析、智能系统、人机交互、模式识别、语音合成、声纹识别、语义分析、生物特征识别、生成对抗网络、无人驾驶、无人机、无人车
英文 Artificial Intelligence(AI)、Machine Learning、Deep Learning、Natural Language Processing(NLP)、Computer Vision、Image Recognition、Speech Recognition、Facial Recognition、Fuzzy Logic、Logic Programming、Probabilistic Reasoning、Neural Network、Ontology Engineering、Expert System、Intelligent System、Speech Processing、Knowledge Representation and Reasoning、Planning and Scheduling、Smart Robot、Video Recognition、Gesture Control、Automatic Drive、Virtual Assistant、Predictive Analytics 、Intelligent System、Auto Drive、Driverless、Automated Vehicle、Auto Navigation
Related Search Terms in the Field of Artificial Intelligence
变量类型 变量名称 变量符号 变量含义
自变量 权利要求数 Claim 专利权利要求数量
IPC分类数 IPC 专利的IPC分类号数量
文献页数 Page 专利申请文献的总页数
引文次数 Refer 参考相关专利或科技文献的数量
发明人数量 Inventor 每项专利的发明人数量
是否合作申请 Cooper 合作申请设置为1,否则为0
申请人类型 Firm
Univ
Organ
以个人为参照设置三个虚拟变量,分别是企业(Firm)、高校及科研院所(Univ)、机关团体(Organ)
是否外国人申请 Foreign 申请人来自国外设定为1,否则为0
控制变量 区域 East
Center
West
以其他(Other)为参照,对中国的区域设定三个虚拟变量,分别为东部(East)、中部(Center)以及西部(West)
时间 / 根据《专利法》修改时间,以1985-1992作为参照,设定三个虚拟变量,分别为1993-2000、2001-2008以及2009-2018
Variable Name, Conformity and Meaning
样本数 事件数 删失数 生存时间/月 Kaplan-Meier
估计生存率
均值 中位数 24个月 30个月 36个月
78 254 39 827 38 427 32.81 33 77% 64% 54%
Survival Analysis of the Patent Review Cycle in the Field of Artificial Intelligence in China
Kaplan-Meier Survival Function Curve of Invention Patent Examination Cycle in the Field of Artificial Intelligence in China
样本 样本数 事件数 删失数 生存时间/月 Kaplan-Meier估计生存率 对数秩检验P
均值 中位数 24个月 30个月 36 个月 Log-Rank Breslow
合作申请 6 150 3 096 3 054 32.65 32 0.76 0.64 0.53 0.88 0.94
非合作申请 72 104 36 731 35 373 32.82 33 0.77 0.64 0.54
Survival Analysis of Cooperative Application and Non-cooperative Application Patent Examination Cycle
Kaplan-Meier Survival Function Curve of Cooperative and Non-cooperative Patent Examination Cycle
样本 样本数 事件数 删失数 生存时间/月 Kaplan-Meier估计生存率 Two-Stage检验P
均值 中位数 24个月 30个月 36 个月
本国专利 68 627 34 517 34 110 32.11 32 0.75 0.63 0.53 0.00
外国专利 9 627 5 310 4 317 37.84 36 0.84 0.75 0.64
Survival Analysis of the Examination Cycle of Domestic and Foreign Patent Applications in China
Kaplan-Meier Survival Function Curve of the Examination Cycle of Domestic and Foreign Patent Applications in China
变量类型 变量 b S.E. Wald卡方值 P HR HR 95.0% CI
专利客体特征 Claim -0.01 0.00 -14.83 0.00 0.99 0.988~0.990
IPC -0.07 0.00 -19.87 0.00 0.93 0.925~0.938
Page 0.00 0.00 14.47 0.00 1.00 1.003~1.004
Refer 0.10 0.00 93.55 0.00 1.10 1.100~1.104
专利主体特征 Inventor 0.02 0.00 7.83 0.00 1.02 1.012~1.020
Cooper 0.01 0.02 0.64 0.52 1.01 0.975~1.052
Foreign -0.04 0.03 -1.02 0.31 0.96 0.899~1.034
申请人
类型
Firm -0.12 0.02 -4.85 0.00 0.89 0.846~0.931
Univ 0.44 0.04 17.59 0.00 1.56 1.483~1.638
Organ 0.22 0.06 4.44 0.00 1.25 1.133~1.379
控制变量 区域 East 0.11 0.04 3.47 0.00 1.12 1.050~1.191
West 0.07 0.04 1.87 0.06 1.07 0.997~1.150
Center 0.11 0.04 3.24 0.00 1.12 1.046~1.199
时间 1993-2000 -0.05 0.12 -0.35 0.73 0.96 0.742~1.231
2001-2008 0.43 0.19 3.49 0.00 1.54 1.210~1.973
2009-2018 -1.12 0.04 -9.03 0.00 0.33 0.255~0.415
Cox Proportional Hazard Regression Results in Patent Examination Cycle
[1] 卢娣. 专利授权系统及其时滞问题研究[D]. 武汉: 华中科技大学, 2017.
[1] (Lu Di. Research on the System of the Patent Grant and Its Delay[D]. Wuhan: Huazhong University of Science and Technology, 2017.)
[2] 余璎璎. 国外绿色专利快速审查制度及其对我国的借鉴[D]. 武汉: 华中科技大学, 2013.
[2] (Yu Yingying. Green Patent Fast Examination Programs of Foreign Countries and Its Reference to China[D]. Wuhan: Huazhong University of Science and Technology, 2013.)
[3] 臧维, 张延法, 徐磊. 我国人工智能政策文本量化研究——政策现状与前沿趋势[J]. 科技进步与对策, 2021, 38(15): 125-134.
[3] (Zang Wei, Zhang Yanfa, Xu Lei. Quantitative Research on Artificial Intelligence Policy Text in China: Policy Status Quo and Frontier Trends[J]. Science & Technology Progress and Policy, 2021, 38(15):125-134.)
[4] 清华大学人工智能研究院. 人工智能发展报告(2011-2020)[R/OL].[2022-04-19]. http://pg.jrj.com.cn/acc/Res/CN_RES/INDUS/2021/1/23/cba37d62-c122-4ff3-9745-d4b52a4799d4.pdf.
[4] (Institute of Artificial Intelligence, Tsinghua University. Report on Artificial Intelligence Development (2011-2020)[R/OL].[2022-04-19]. http://pg.jrj.com.cn/acc/Res/CN_RES/INDUS/2021/1/23/cba37d62-c122-4ff3-9745-d4b52a4799d4.pdf.)
[5] 刘艳秋, 韩俊敏, 王建国, 等. 人工智能专利技术分布、演化及合作创新网络分析[J]. 中国科技论坛, 2021(3): 64-74.
[5] (Liu Yanqiu, Han Junmin, Wang Jianguo, et al. Analysis on the Distribution, Evolution and Cooperative Innovation Network of Artificial Intelligence Patent Technology[J]. Forum on Science and Technology in China, 2021(3): 64-74.)
[6] 文家春. 专利审查行为对技术创新的影响机理研究[J]. 科学学研究, 2012, 30(6): 848-855.
[6] (Wen Jiachun. Study on the Impact Mechanism of the Patent Examination Behavior on Technological Innovation[J]. Studies in Science of Science, 2012, 30(6): 848-855.)
[7] 姜南, 刘星, 马艺闻. 中美区块链技术发明专利审查周期的对比研究[J]. 情报杂志, 2020, 39(9): 65-72.
[7] (Jiang Nan, Liu Xing, Ma Yiwen. Research on the Comparison of the Examination Cycle of Blockchain Technology Invention Patents in China and the United States[J]. Journal of Intelligence, 2020, 39(9): 65-72.)
[8] Wang M Y, Lin J H. The Modeling and the Affecting Factors for Patent Examination Durations: The Biotechnology Patents of Taiwan and South Korea at the USPTO[C]// Proceedings of PICMET’11:Technology Management in the Energy Smart World (PICMET). IEEE, 2011: 1-6.
[9] Kovács B. Too Hot to Reject: The Effect of Weather Variations on the Patent Examination Process at the United States Patent and Trademark Office[J]. Research Policy, 2017, 46(10): 1824-1835.
doi: 10.1016/j.respol.2017.08.010
[10] Popp D, Juhl T, Johnson D K N. Time in Purgatory: Examining the Grant Lag for US Patent Applications[J]. The B.E. Journal of Economic Analysis & Policy, 2004, 4(1): 1-45.
[11] 卢娣. 我国发明专利审查周期的影响因素探析[J]. 科研管理, 2017, 38(7): 137-144.
[11] (Lu Di. An Analysis of the Influencing Factors of China’s Invention Patent Examination Period[J]. Science Research Management, 2017, 38(7): 137-144.)
[12] 文家春, 卢炳克. 专利实质审查周期的影响因素[J]. 中国科技论坛, 2016(12): 90-97.
[12] (Wen Jiachun, Lu Bingke. Factors Analysis on Period of Patent Substantive Examination[J]. Forum on Science and Technology in China, 2016(12): 90-97.)
[13] incoPat[EB/OL]. [2021-07-08]. https://www.incopat.com/.
[14] 吕一博, 韦明, 林歌歌. 基于专利计量的技术融合研究: 判定、现状与趋势——以物联网与人工智能领域为例[J]. 科学学与科学技术管理, 2019, 40(4): 16-31.
[14] (Lyu Yibo, Wei Ming, Lin Gege. Research of Technology Fusion Based on Patentometrics: Judge, Status and Trends-Take the Field of Internet of Things and Artificial Intelligence as an Example[J]. Science of Science and Management of S&T, 2019, 40(4): 16-31.)
[15] 周伯柱, Aditi Gupta. 基于论文和专利分析的人工智能发展态势研究[J]. 世界科技研究与发展, 2019, 41(4): 380-391.
[15] (Zhou Bozhu, Aditi Gupta. Development Trend of Artificial Intelligence Based on Papers and Patent Analysis[J]. World Sci-Tech R&D, 2019, 41(4): 380-391.)
[16] WIPO. PATENTSCOPE人工智能索引[EB/OL]. [2021-07-08]. https://www.wipo.int/tech_trends/zh/artificial_intelligence/patentscope.html.
[16] (WIPO. PATENTSCOPE Artificial Intelligence Index[EB/OL]. [2021-07-08]. https://www.wipo.int/tech_trends/zh/artificial_intelligence/patentscope.html.)
[17] Lerner J. The Importance of Patent Scope: An Empirical Analysis[J]. The RAND Journal of Economics, 1994, 25(2): 319-333.
doi: 10.2307/2555833
[18] 刘凤朝, 张淑慧, 朱姗姗. 技术知识多样性的双重作用:专利受理及创新影响——基于对象-过程视角的研究[J]. 中国软科学, 2018(9): 148-159.
[18] (Liu Fengchao, Zhang Shuhui, Zhu Shanshan. The Dual Role of Technical Knowledge Diversity: Patent Approval and Innovation Impact-Research Based on Object-Process Perspective[J]. China Soft Science, 2018(9): 148-159.)
[19] 宋爽, 陈向东. 信息技术领域专利维持状况及影响因素研究[J]. 图书情报工作, 2013, 57(18): 98-103, 132.
doi: 10.7536/j.issn.0252-3116.2013.18.017
[19] (Song Shuang, Chen Xiangdong. Research on Patent Maintenance and Its Influencing Factors in the Field of Information Technology[J]. Library and Information Service, 2013, 57(18): 98-103, 132.)
doi: 10.7536/j.issn.0252-3116.2013.18.017
[20] Xie Y, Giles D E. A Survival Analysis of the Approval of US Patent Applications[J]. Applied Economics, 2011, 43(11): 1375-1384.
doi: 10.1080/00036840802600418
[21] 彭非, 王伟. 生存分析[M]. 北京: 中国人民大学出版社, 2004.
[21] (Peng Fei, Wang Wei. Survival Analysis[M]. Beijing: China Renmin University Press, 2004.)
[22] 路文馨. 基于比例风险模型的生存分析研究[D]. 广州: 华南理工大学, 2019.
[22] (Lu Wenxin. Survival Analysis Based on Proportional Hazards Model[D]. Guangzhou: South China University of Technology, 2019.)
[23] Kaplan E L, Meier P. Nonparametric Estimation from Incomplete Observations[J]. Journal of the American Statistical Association, 1958, 53(282): 457-481.
doi: 10.1080/01621459.1958.10501452
[24] Saluja R, Cheng S, delos Santos K A, et al. Estimating Hazard Ratios from Published Kaplan‐Meier Survival Curves: A Methods Validation Study[J]. Research Synthesis Methods, 2019, 10(3): 465-475.
doi: 10.1002/jrsm.1362 pmid: 31134735
[25] 张建卫, 王健, 周洁, 等. 高校高层次领军人才成长的实证研究[J]. 科学学研究, 2019, 37(2): 235-244.
[25] (Zhang Jianwei, Wang Jian, Zhou Jie, et al. An Empirical Study on Career Trajectory of Leading Talents at Universities[J]. Studies in Science of Science, 2019, 37(2): 235-244.)
[26] 俞富坤. 基于COX模型的财务困境风险的资本结构差异性研究[J]. 社会科学家, 2021(11): 85-91.
[26] (Yu Fukun. Research on Capital Structure Difference of Financial Distress Risk Based on the COX Model[J]. Social Scientist, 2021(11): 85-91.)
[27] Harhoff D, Wagner S. The Duration of Patent Examination at the European Patent Office[J]. Management Science, 2009, 55(12): 1969-1984.
doi: 10.1287/mnsc.1090.1069
[28] Tong T W, Zhang K, He Z L, et al. What Determines the Duration of Patent Examination in China? An Outcome-Specific Duration Analysis of Invention Patent Applications at SIPO[J]. Research Policy, 2018, 47(3): 583-591.
doi: 10.1016/j.respol.2018.01.002
[29] 韩冰. 谈专利审查程序和诉讼程序中对技术特征的解读[J]. 法制与社会, 2013(32): 297-298.
[29] (Han Bing. On the Interpretation of Technical Features in Patent Examination Procedures and Litigation Procedures[J]. Legal System and Society, 2013(32): 297-298.)
[30] McCarthy I P, Ruckman K. Licensing Speed: Its Determinants and Payoffs[J]. Journal of Engineering and Technology Management, 2017, 46: 52-66.
doi: 10.1016/j.jengtecman.2017.11.002
[1] Song Ruoxuan,Qian Li,Du Yu. Identifying Academic Creative Concept Topics Based on Future Work of Scientific Papers[J]. 数据分析与知识发现, 2021, 5(5): 10-20.
[2] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[3] Lu Wei,Luo Mengqi,Ding Heng,Li Xin. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[4] Fu Xin. Studies on Intelligent Trends in Third Generation Search Engines[J]. 现代图书情报技术, 2002, 18(6): 28-30.
[5] Huang Kun,Fu Shaohong. Some Related Problems Faced by the Application of It in Information Retrieval[J]. 现代图书情报技术, 2001, 17(3): 26-29.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn