Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (5): 85-88    DOI: 10.11925/infotech.1003-3513.2007.05.20
Current Issue | Archive | Adv Search |
Hyperlinks Technology Realization Based on Wildcard Domain Name and the Keyword for Biology Information
Ren Hui
(Ludong University Library,Yantai  264025, China)
Export: BibTeX | EndNote (RIS)      

In the retrieval process, the key word is nimble,easy to use,but its efficiency is low.Through the study on the searching approaches of biological information on Web by the combined technology of Wildcard domain name and Keyword,and through the extended domain name analysis technology,the new directional technology and the increase algorithm,the search technology on biology stand,special topic and the Homepage will be realized.

Key wordsBiological information      Wildcard domain name      Keyword      Hyperlinks     
Received: 20 March 2007      Published: 25 May 2007


Corresponding Authors: Ren Hui     E-mail:
About author:: Ren Hui

Cite this article:

Ren Hui . Hyperlinks Technology Realization Based on Wildcard Domain Name and the Keyword for Biology Information. New Technology of Library and Information Service, 2007, 2(5): 85-88.

URL:     OR

3北京IDC网-IDN编码转换器. Jan. 9,2007)
4基因工程专题一. Jan. 12,2007)
6Consortium,Xqueryl.0. Jan. 12,2007)
7LIQ,Moon B.Indexing and Query XML Data for Regular Path Expressions.In Proceedings of the International Conference on Very Large Data Bases.San Francisco,CA,USA:Morgan Kaufmann Publishers Inc,2001:361-370
8Ashburner M,Ball C A,Blake J A,et al.Gene Ontology:Tool for the Unification of Biology.The Gene Ontology Consortium.Nature Genetics.Nat Genet,2000(25):25-29
9Foster I. The Grid:A New Infrastructure for 21st Century Science.Physics Today,2002,55(2):42-47

[1] Mingzhu Sun,Jing Ma,Lingfei Qian. Extracting Keywords Based on Topic Structure and Word Diagram Iteration[J]. 数据分析与知识发现, 2019, 3(8): 68-76.
[2] Xiuxian Wen,Jian Xu. Research on Product Characteristics Extraction and Hedonic Price Based on User Comments[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[3] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[4] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[5] Yuman Li,Zhibo Chen,Fu Xu. Classifying Texts with KACC Model[J]. 数据分析与知识发现, 2019, 3(10): 89-97.
[6] Liu Zhuchen,Chen Hao,Yu Yanhua,Li Jie. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[7] Xia Tian. Extracting Keywords with Modified TextRank Model[J]. 数据分析与知识发现, 2017, 1(2): 28-34.
[8] Ning Jianfei,Liu Jiangzhen. Using Word2vec with TextRank to Extract Keywords[J]. 现代图书情报技术, 2016, 32(6): 20-27.
[9] Xu Deshan, Li Hui, Zhang Yunliang. A Method of Keywords Annotation Based on Linked Triples[J]. 现代图书情报技术, 2015, 31(9): 31-37.
[10] Li Junfeng, Lv Xueqiang, Zhou Shaojun. Patent Keyword Indexing Based on Weighted Complex Graph Model[J]. 现代图书情报技术, 2015, 31(3): 26-32.
[11] Li Xiangdong, Cao Huan, Ding Cong, Huang Li. Short-text Classification Based on HowNet and Domain Keyword Set Extension[J]. 现代图书情报技术, 2015, 31(2): 31-38.
[12] Zhang Yingyi, Zhang Chengzhi, Chi Xuehua, Li Lei. Difference Research on Keywords Tagging Behavior for Academic User Blog——A Case Study of[J]. 现代图书情报技术, 2015, 31(10): 13-21.
[13] Gu Yijun, Xia Tian. Study on Keyword Extraction with LDA and TextRank Combination[J]. 现代图书情报技术, 2014, 30(7): 41-47.
[14] Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas:An Empirical Study of LIS[J]. 现代图书情报技术, 2014, 30(7): 84-91.
[15] Xia Dong, Xiao Xiaodan, Li Guolei, Chen Xianlai. Research on Correspondence Between Keyword and Chinese Library Classification Based on Latent Semantic Analysis[J]. 现代图书情报技术, 2014, 30(12): 92-96.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938