Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 28-32    DOI: 10.11925/infotech.1003-3513.2010.10.05
article Current Issue | Archive | Adv Search |
Discovery of Latent Semantic in Social Annotation Based on PLSA
Jiang Cuiqing1,2, Zhang Yu1, Ding Yong1
1. School of Management, Hefei University of Technology, Hefei 230009, China;
2. Ministry of Education key Laboratory of Process Optimization and Intelligent Decision, Hefei 230009,China
Export: BibTeX | EndNote (RIS)      

In order to solve the problem of fuzzy semantic in social annotation system, this paper analyses the relation among users, resources and tags, introduces latent semantic analysis probabilistic PLSA model. By extending PLSA model,the annotation is mapped to a finite-dimensional latent semantic space, and the collection of latent semantic of annotation is obtained by clustering. This discovery method improves the satisfaction of user’s actual need for resource in social annotation system. Finally, experimental results show the effectiveness of the proposed method.

Key wordsSocial      annotation      Latent      semantic      PLSA      Tag     
Received: 10 September 2010      Published: 04 January 2011



Cite this article:

Jiang Cuiqing, Zhang Yu, Ding Yong. Discovery of Latent Semantic in Social Annotation Based on PLSA. New Technology of Library and Information Service, 2010, 26(10): 28-32.

URL:     OR

[1] Begelman G.Automated Tag Clustering: Improving Search and Exploration in the Tag Space . In: Proceedings of the Collaborative Web Tagging Workshop at WWW’06. 2006.

[2] Mika P. Ontologies are Us: A Unified Model of Social Networks and Semantics . In: Proceedings of International Semantic Web Conference.2005:522-536.

[3] Yeung C M A, GibbinsN, Shadbolt N.Understanding the Semantics of Ambiguous Tags in Folksonomies . In: Proceedings of the International Workshop on Emergent Semantics and Ontology Evolution (ESOE2007) at ISWC/ASWC2007.2007:108-121.

[4] Specia L,Motta E.Integrating Folksonomy With Semantic Web .In:Proceedings of the 4th European Conference on the Semantic Web: Research and Applications,Innsbruck, Austria.2007:624-639.

[5] Hofmann T.Probabilistic Latent Semantic Analysis . In: Proceedings of Uncertainty in Artificial Intelligence, UAI’99.1999:289-296.

[6] Hofmann T.Probabilistic Latent Semantic Indexing . In: Proceedings of SIGIR’99,Berkeley,CA, USA.1999:50-57.

[7] Golder S A, Huberman B A.Usage Patterns of Collaborative Tagging Systems
[J].Journal of Information Science,2006,32(2):198-208.

[8] Kim H, Jia A T, Haa I ,et al.Collaborative Filtering Based on Collaborative Tagging for Enhancing the Quality of Recommendation
[J]. Electronic Commerce Research and Applications,2010,9(1):73-83.

[9] 王萍,张际平.一种社会性标签聚类算法
[J]. 计算机应用与软件 ,2010,27(2):126-129.

[10] 曹高辉,焦玉英,成全.基于凝聚式层次聚类算法的标签聚类研究
[J]. 现代图书情报技术 ,2008(4):23-28.

[11] 王翠英.标签的聚类分析研究
[J]. 现代图书情报技术 ,2008(5):67-71.

[12] 窦永香,苏山佳,赵捧未.基于Porter算法的英文标签聚类方法研究
[J]. 现代图书情报技术 ,2009(9):41-44.

[1] Wang Yifan,Li Bo,Shi Hua,Miao Wei,Jiang Bin. Annotation Method for Extracting Entity Relationship from Ancient Chinese Works[J]. 数据分析与知识发现, 2021, 5(9): 63-74.
[2] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[3] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[4] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[5] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[6] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[7] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[8] Xu Zheng,Le Xiaoqiu. Generating AND-OR Logical Expressions for Semantic Features of Categorical Documents[J]. 数据分析与知识发现, 2021, 5(5): 95-103.
[9] Shi Xiang,Liu Ping. Extraction and Representation of Domain Knowledge with Semantic Description Model and Knowledge Elements——Case Study of Information Retrieval[J]. 数据分析与知识发现, 2021, 5(4): 123-133.
[10] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[11] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[12] Zhang Qi,Jiang Chuan,Ji Youshu,Feng Minxuan,Li Bin,Xu Chao,Liu Liu. Unified Model for Word Segmentation and POS Tagging of Multi-Domain Pre-Qin Literature[J]. 数据分析与知识发现, 2021, 5(3): 2-11.
[13] Zhang Jinzhu, Yu Wenqian. Topic Recognition and Key-Phrase Extraction with Phrase Representation Learning[J]. 数据分析与知识发现, 2021, 5(2): 50-60.
[14] Xu Yabin, Sun Qiutian. Identifying Leaders and Dissemination Paths of Public Opinion[J]. 数据分析与知识发现, 2021, 5(2): 32-42.
[15] Li Xiao, Qu Jiansheng. Review of Application and Evolution of Meta-Analysis in Social Sciences[J]. 数据分析与知识发现, 2021, 5(11): 1-12.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938