Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (2): 69-75    DOI: 10.11925/infotech.1003-3513.2011.02.11
article Current Issue | Archive | Adv Search |
Analysis of Micro-blogging User Character and Motivation ——Take Micro-blogging of as an Example
Zhao Wenbing, Zhu Qinghua, Wu Kewen, Huang Qi
Department of Information Management, Nanjing University, Nanjing 210093,China
Export: BibTeX | EndNote (RIS)      

Using metrological methods, this paper analyzes data crawled from micro-blogging of and also uses Pajek to view the social network structure of Hexun micro-blogging. The result shows that, the characters of micro-blogging users have favorable statistic characteristics, and the regional disparities between micro-blogging users are quite remarkable. Moreover, two kinds of micro-blogging users account for almost 90% of the total users. This paper is helpful for other researchers to study micro-blogging users behavior.

Key wordsMicro-blogging      User character      User motivation      Social network analysis      Power-law distribution     
Received: 10 December 2010      Published: 25 March 2011



Cite this article:

Zhao Wenbing, Zhu Qinghua, Wu Kewen, Huang Qi. Analysis of Micro-blogging User Character and Motivation ——Take Micro-blogging of as an Example. New Technology of Library and Information Service, 2011, 27(2): 69-75.

URL:     OR

[1] 微博客-维基百科 . .

[2] 微博_百度百科 . .

[3] Broder A, Kumar R, Maghoul F, et al. Graph Structure in the Web
[J].Computer Networks,2000,33(1-6): 309-320.

[4] Nardi B A, Schiano D J, Gumbrecht M, et al. Why We Blog
[J].Communications of the ACM, 2004,47(12): 41-46.

[5] Honeycutt C, Herring S C. Beyond Microblogging: Conversation and Collaboration via Twitter . In: Proceedings of the 42nd Hawaii International Conference on System Sciences.2009:1-10.

[6] Java A, Song X, Finin T, et al. Why We Twitter: Understanding Micro-blogging Usage and Communities . In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, University of Maryland, Baltimore County. ACM Press, 2007

[7] Naaman M, Boase J, Lai C H. Is It Really About Me?:Message Content in Social Awareness Streams . In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, New York.2010: 189-192.

[8] 黄朔. 媒介融合视域中微博多级传播模式探究
[J]. 东南传播 ,2010(6):99-101.

[9] 卢金珠. 微博客传播特性及盈利模式分析
[J]. 现代传播 ,2010(4):127-130.

[10] 王树义,王鑫. 基于微博客Twitter的企业竞争情报搜集
[J]. 情报学报 ,2010,29(3):545-552.

[11] 崔争艳. 基于语义的微博短信息分类
[J]. 现代计算机:专业版 ,2010(8):18-20.

[12] 王晓光.微博客用户行为特征与关系特征实证分析——以“新浪微博”为例
[J]. 图书情报工作 ,2010,54(14):66-70.

[13] 夏雨禾. 微博互动的结构与机制——基于对新浪微博的实证研究
[J]. 新闻与传播研究 ,2010(4):60-69.

[14] Barabasi A L, Albert R. Emergence of Scaling in Random Networks
[J].Science, 1999,286(5439): 509-512.

[1] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[2] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[3] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[4] Guo Bo,Zhao Junrui,Sun Yu. Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[5] Chen Fen,Fu Xi,He Yuan,Xue Chunxiang. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[6] Wang Zhongyi,Zhang Heming,Huang Jing,Li Chunya. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[7] Li Fei,Zhang Jian,Wang Zongshui. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[8] Wang Xiwei,Zhang Liu,Li Shimeng,Wang Nan’axue. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[9] Fan Ruxia,Zeng Jianxun,Gao Yaruixi. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[10] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[11] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[12] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[13] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[14] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[15] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938