Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (6): 54-59    DOI: 10.11925/infotech.1003-3513.2012.06.09
Current Issue | Archive | Adv Search |
Research on Collaborative Filtering Recommendation Algorithm by Fusing Social Network
Yu Yan1,2, Qiu Guanghua1,3
1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Computer Science Department, Southeast University Chengxian College, Nanjing 210088, China;
3. Information Science Department, Pennsylvania State University, Malvern 19355, USA
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at data sparsity and malicious behavior in traditional collaborative filtering algorithm, this paper presents a new algorithm of collaborative filtering based on social network. Depending on social network information, the algorithm integrates user’s trust and preference in order to find the nearest neighbors of the target user, which the algorithm uses to compute weight of neighbors and to form item recommendation. Experimental results show that the algorithm can alleviate the sparsity and malicious behaviors problems and achieve a better prediction accuracy than traditional collaborative filtering algorithms.
Key wordsCollaborative filtering      Social network      Random walk with restart     
Received: 05 March 2012      Published: 30 August 2012



Cite this article:

Yu Yan, Qiu Guanghua. Research on Collaborative Filtering Recommendation Algorithm by Fusing Social Network. New Technology of Library and Information Service, 2012, 28(6): 54-59.

URL:     OR

[1] Das A, Datar M, Garg A, et al. Google News Personalization: Scalable Online Collaborative Filtering[C]. In: Proceedings of the 16th International World Wide Web Conference. New York: ACM Press, 2007: 272-280.

[2] Linden G, Smith B, York J. Recommendation: Item-to-Item Collaborative Filtering [J]. IEEE Internet Computing, 2003, 7(1):76-80.

[3] Su X Y, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelligence, 2009.[2011-12-08].

[4] Massa P, Avesani P. Trust-aware Recommender Systems[C]. In: Proceedings of the 2007 ACM Conference on Recommender Systems. New York: ACM Press, 2007:17-24.

[5] Granovetter M S. The Strength of Weak Ties[J]. American Journal of Sociology, 1973, 78(6):1360-1380.

[6] Kautz H, Selman B, Shah M. ReferralWeb: Combining Social Networks and Collaborative Filtering Communications of the ACM[J]. Communications of the ACM, 1997, 40(3):63-65.

[7] Golbeck J. Generating Predictive Movie Recommendations from Trust in Social Networks[C]. In: Proceedings of the 4th International Conference on Trust Management(iTrust2006). Berlin,Heidelberg: Springer-Verlag, 2006:93-104.

[8] Ziegler C N, Lausen G. Analyzing Correlation Between Trust and User Similarity in Online Communities[C]. In: Proceedings of the 2nd International Conference on Trust Management (iTrust 2004). Berlin,Heidelberg: Springer-Verlag,2004:251-265.

[9] Avesani P, Massa P, Tiella R. A Trust-enhanced Recommender System Application: Moleskiing[C].In: Proceedings of the 2005 ACM Symposium on Applied Computing(SAC’05). New York: ACM Press, 2005:1589-1593.

[10] Massa P, Avesani P. Trust-aware Recommender Systems[C]. In: Proceedings of the 2007 ACM Conference on Recommender Systems(RecSys’07). New York: ACM Press, 2007:17-24.

[11] Vozalis E, Margaritis K G. Analysis of Recommender Systems’ Algorithms [C]. In: Proceedings of the 6th Hellenic European Conference on Computer Mathematics and Its Applications (HERCMA’2003), Athens, Greece. 2003:1-14.

[12] Victor P, De Cock M, Cornelis C. Trust and Recommendations[A].//Ricci F,Rokach L, Shapira B, et al.Recommender Systems Handbook[M].Springer,2011:645-675.

[13] Pan J Y, Yang H J, Faloutsos C, et al. GCap: Graph-based Automatic Image Captioning[C].In: Proceedings of the 2004 Computer Vision and Pattern Recognition Workshop(CVPRW ’04), Washington DC,USA. USA:IEEE CPS, 2004.

[14] Urban J, Jose J M. Adaptive Image Retrieval Using a Graph Model for Semantic Feature Integration[C]. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval. USA: ACM Press, 2006:117-126.

[15] Fouss F, Pirotte A, Renders J M, et al. Random-walk Computation of Similarities Between Nodes of a Graph with Application to Collaborative Recommendation[J]. Knowledge and Data Engineering, 2007, 19(3):355-369.

[16] 俞琰, 邱广华. 显式评分的重启动随机游走推荐算法研究[J]. 现代图书情报技术 , 2012(3):8-14. (Yu Yan, Qiu Guanghua. Research on Random Walk with Restart Recommendation Algorithm of Explicit Rating [J]. New Technology of Library and Information Service, 2012(3):8-14.)

[17] 俞琰, 邱广华. 用户兴趣变化感知的重启动随机游走推荐算法研究[J]. 现代图书情报技术 , 2012(4):48-53. (Yu Yan, Qiu Guanghua. Research on User Interest Shift Aware Random Walk with Restart Recommendation Algorithm[J]. New Technology of Library and Information Service, 2012(4):48-53.)

[18] Tong H H, Faloutsos C, Pan J Y. Fast Random Walk with Restart and Its Applications[C].In: Proceedings of the 6th International Conference on Data Mining(ICDM’06). Washington, DC, USA:IEEE Computer Society,2006:613-622.

[19] De K J, Liekens A, Goethals B. GauSo: Graph Base Music Recommendation in a Social Bookmarking Service[C]. In: Proceedings of the 10th International Symposium on Advances in Intelligent Data Analysis X. New York: Spring-Verlag, 2011:138-149.

[20] Boyd D. Friends, Friendsters, and MySpace Top 8: Writing Community into Being on Social Network Sites[J]. First Monday, 2006, 11(12):1-19.

[21] Gross R, Acquisti A. Information Revelation and Privacy in Online Social Networks[C]. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society. USA: ACM Press, 2005:71-80.
[1] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[2] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[3] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[4] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[5] Xu Yabin, Sun Qiutian. Identifying Leaders and Dissemination Paths of Public Opinion[J]. 数据分析与知识发现, 2021, 5(2): 32-42.
[6] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[7] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[8] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[9] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[10] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[11] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[12] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[13] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[14] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[15] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938