Please wait a minute...
New Technology of Library and Information Service  2012, Vol. Issue (9): 42-48    DOI: 10.11925/infotech.1003-3513.2012.09.08
Current Issue | Archive | Adv Search |
Research on the Dynamic Construction Method of SNS Network Learning Community Based on Interest
Wang Dandan1, Ma Wenhu2, Liu Youhua2
1. Department of Computer Science & Technology, Nantong University, Nantong 226019, China;
2. School of Management and Engineering, Nanjing University, Nanjing 210093, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper puts forward a model and a conceptual framework of network learning community based on SNS, proposes a dynamic construction method, and implements a secondary development for the open source code “SpaceBuilder”. The same-interest students are dynamically divided into the same community group through mining and analyzing students’ learning data by SSIS and SSAS. It provides a good interactive environment for students’ cooperation study, and also solves the problem of “lonely” students in the process of network learning.
Key wordsNetwork learning community      SNS      Interest      Dynamic construction     
Received: 25 July 2012      Published: 25 December 2012



Cite this article:

Wang Dandan, Ma Wenhu, Liu Youhua. Research on the Dynamic Construction Method of SNS Network Learning Community Based on Interest. New Technology of Library and Information Service, 2012, (9): 42-48.

URL:     OR

[1] 杨洪刚,宁玉文,高东怀,等.基于SNS的网络学习共同体构建研究[J]. 现代教育技术, 2010, 20(5): 93-96.(Yang Honggang, Ning Yuwen, Gao Donghuai, et al. The Construction of SNS-based Network Learning Community [J]. Modern Educational Technology, 2010, 20(5):93-96.)
[2] 冯旭鹏.构建基于SNS的研究生校际网络学习共同体的探究[D].南昌:南昌大学,2010.(Feng Xupeng. Study on Construction of Graduates’ Interscholastic Online Learning Community Based on SNS[D]. Nanchang: Nanchang University, 2010.)
[3] CSDN学生大本营[EB/OL].[2012-04-15]. (CSDN Student Union [EB/OL]. [2012-04-15].
[4] Zhang T Z, Shen R M. Multi-Interest Self-Organizing Learning Community Model and Construction Algorithms [J]. Chinese Journal of Electronics, 2010, 19(1):18-22.
[5] Yang F, Shen R M, Han P. A Novel Self-Organizing E-Learner Community Model with Award and Exchange Mechanisms [J]. Journal of Zhejiang University-Science A, 2004, 5(11):1343-1351.
[6] 孙多.基于兴趣度的聚类协同过滤推荐系统的设计[J]. 安徽大学学报: 自然科学版, 2007, 31(5): 19-22.(Sun Duo. An Clustering and Optimized Collaborative Filtering Recommendation Based on Interest Measure [J]. Journal of Anhui University: Natural Sciences, 2007, 31(5):19-22.)
[7] 裴蕾.基于Web数据挖掘的电子商务推荐系统的研究[D].上海: 同济大学,2006.(Pei Lei. Research of Electronic Commerce Recommendation System Based on Web Mining [D]. Shanghai: Tongji University, 2006.)
[8] 程艳, 许维胜, 杨继君, 等.基于本体兴趣特征向量空间模型的社区自组织算法[J]. 系统工程, 2009, 27(5): 96-103.(Cheng Yan, Xu Weisheng, Yang Jijun, et al. A Self-Organization Algorithm for Community Based on Ontology-based Learner’s Interest Eigenvector Space Model[J]. Systems Engineering, 2009, 27(5):96-103.)
[9] 宋慧宁,张凯.SNS在教学中的应用潜力分析[J]. 计算机时代, 2010(7): 62-64.(Song Huining, Zhang Kai. Analysis on SNS Application Potential in Teaching [J]. Computer Era, 2010(7):62-64.)
[1] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[2] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[3] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[4] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[5] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[6] Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[7] Hou Jun,Liu Kui,Li Qianmu. Classification Recommendation Based on ESSVM[J]. 数据分析与知识发现, 2018, 2(3): 9-21.
[8] Liu Hongwei,Gao Hongming,Chen Li,Zhan Mingjun,Liang Zhouyang. Identifying User Interests Based on Browsing Behaviors[J]. 数据分析与知识发现, 2018, 2(2): 74-85.
[9] Zeng Jin,Lu Wei,Ding Heng,Chen Haihua. Modeling User’s Interests Based on Image Semantics[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[10] Xie Mengyao,Pan Xuwei. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[11] Ba Zhichao,Li Gang,Zhu Shiwei. Similarity Measurement of Research Interests in Semantic Network[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[12] Gui Sisi, Lu Wei, Huang Shihao, Zhou Pengcheng. User Interest Prediction Combing Topic Model and Multi-time Function[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[13] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[14] Wang Zhongqun, Jiang Sheng, Xiu Yu, Huang Subin, Wang Qiansong. Information Resource Recommendation Method Based on Dynamic Tag-Resource Network[J]. 现代图书情报技术, 2015, 31(3): 49-57.
[15] Liu Zhanbing, Xiao Shibin. Collaborative Filtering Recommended Algorithm Based on User's Interest Fuzzy Clustering[J]. 现代图书情报技术, 2015, 31(11): 12-17.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938