Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (2): 48-54    DOI: 10.11925/infotech.1003-3513.2014.02.07
Current Issue | Archive | Adv Search |
Research on a Method of Implicit Knowledge Push Service Based on Social Network Analysis
Huang Wei, Gao Junfeng, Wang Chen, Qi Yue
School of Management, Jilin University, Changchun 130022, China
Export: BibTeX | EndNote (RIS)      

[Objective] Introduce the theory of social network analysis to solve the problem in implicit knowledge push service. [Context] The research is carried out by selecting the knowledge preference of logined users within 24 hours based on the digital library environment. [Methods] "N-cliques " and "centrality degree" are introduced to analyze the target users. Make the similar users' implicit knowledge requirement explicit and push knowledge to target users. [Results] The breadth and accuracy of implicit knowledge pushing performance is directly affected by parameter of "n", and the implicit knowledge pushed is of more granularity when the threshold is set to "2". [Conclusions] Our research solved the issue of extreme scarcity of pushing data and poor performance of users' implicit knowledge acquirement, promoting the share of implicit knowledge.

Key wordsSocial network analysis      Knowledge push service      N-cliques      Implicit knowledge co-occurrence     
Received: 14 August 2013      Published: 06 March 2014
:  G250  

Cite this article:

Huang Wei, Gao Junfeng, Wang Chen, Qi Yue. Research on a Method of Implicit Knowledge Push Service Based on Social Network Analysis. New Technology of Library and Information Service, 2014, 30(2): 48-54.

URL:     OR

[1] Breese J S, Heekerman D, Kadie C. Empirical Analysis of Predictive Algorithm for Collaborative Filtering[C]. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1998: 43-52.
[2] Papagelis M, Plexousakis D. Qualitative Analysis of User-based and Item-based Prediction Algorithms for Recommendation Agents[J]. Engineering Applications of Artificial Intelligence, 2005, 18(7): 781-789.
[3] Adomavicius G, Kwon Y. New Recommendation Techniques for Multicriteria Rating Systems[J]. IEEE Intelligent System, 2007, 22(3): 48-55.
[4] 焦玉英, 袁静. 基于WIKI的群体知识共享与创新服务研究[J]. 情报科学, 2008, 26(5): 652-656. (Jiao Yuying, Yuan Jing. Research on the Collective Knowledge Sharing and Innovation Service Based on WIKI[J]. Information Science, 2008, 26(5): 652-656.)
[5] 邓胜利, 冯利飞. Web2. 0环境下网络用户的群体动力分析[J]. 图书情报知识, 2011(2): 78-82. (Deng Shengli, Feng Lifei. The Analysis of Network User's Community Dynamics Under Web2. 0 Environment[J]. Document, Information & Knowledge, 2011(2): 78-82.)
[6] Herlocker J, Konstan J A, Riedl J. An Empirical Analysis of Design Choices in Neighborhood-based Collaborative Filtering Algorithms[J]. Information Retrieval, 2002, 5(4): 287-310.
[7] 邢春晓, 高凤荣, 战思南, 等. 适应用户兴趣变化的协同过滤推荐算法[J]. 计算机研究与发展, 2007, 44(2): 296-301. (Xing Chunxiao, Gao Fengrong, Zhan Sinan, et al. A Collaborative Filtering Recommendation Algorithm Incorporated with User Interest Change[J]. Journal of Computer Research and Development, 2007, 44(2): 296-301.)
[8] 董坤. 基于协同过滤算法的高校图书馆图书推荐系统研究[J]. 现代图书情报技术, 2011(11): 44-47. (Dong Kun. Research of Personalized Book Recommender System of University Library Based on Collaborative Filter[J].New Technology of Library and Information Service, 2011(11): 44-47.)
[9] Carmagnola F, Vernero F, Grillo P. SoNARS: A Social Networks-based Algorithm for Social Recommender Systems[C]. In: Proceedings of the 17th International Conference of User Modeling, Adaptation and Personalization (UMAP2009). 2009: 223-234.
[10] 赵杨. 基于语义网格的数字图书馆知识推送服务系统研究[J]. 情报科学, 2007, 25(12): 1869-1873, 1882. (Zhao Yang. Research on Knowledge Push Service System in Digital Library Based on Semantic Grid[J]. Information Science, 2007, 25(12): 1869-1873, 1882.)
[11] 柳巧玲. 面向企业业务的智能知识推送研究[J].情报理论与实践, 2010, 33(11): 76-79. (Liu Qiaoling. Research on Intelligent Knowledge Push for Enterprise Business[J].Information Studies: Theory & Application, 2010, 33(11): 76-79.)
[12] Lee T Q, Park Y, Park Y T. A Time-based Approach to Effective Recommender Systems Using Implicit Feedback[J]. Expert Systems with Applications, 2008, 34(4): 3055-3062.
[13] Ahn H J. A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-starting Problem[J]. Information Sciences, 2008, 178(1): 37-51.
[14] 斯坦利.沃瑟曼, 凯瑟琳.福斯特. 社会网络分析: 方法与应用[M]. 陈禹, 孙彩虹译. 北京: 中国人民大学出版社, 2011: 188-195. (Wasserman S, Faust C. Social Network Analysis: Methods and Applications[M]. Beijing: China Renmin University Press Co., LTD, 2011: 188-195.)

[1] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[2] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[3] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[4] Chen Fen,Fu Xi,He Yuan,Xue Chunxiang. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[5] Wang Zhongyi,Zhang Heming,Huang Jing,Li Chunya. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[6] Li Fei,Zhang Jian,Wang Zongshui. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[7] Wang Xiwei,Zhang Liu,Li Shimeng,Wang Nan’axue. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[8] Fan Ruxia,Zeng Jianxun,Gao Yaruixi. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[9] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[10] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[11] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[12] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[13] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[14] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
[15] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938