Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (4): 27-33    DOI: 10.11925/infotech.1003-3513.2014.04.05
Current Issue | Archive | Adv Search |
Research on Information Fusion for Multiple-sensor Expert Features
Li Gang, Ye Guanghui
Center for the Studies of Information Resources, Wuhan University, Wuhan 430072, China
Export: BibTeX | EndNote (RIS)      

[Objective] In order to fully get expert resources, the authors have carried out the information fusion research based on multiple-sensor expert features. [Methods] Firstly, in the view of working process of sensor, this paper brings out three methods based on knowledge sensor, Web sensor and social network sensor in sequence. Secondly, focusing on resource balancing degree, it designs the method of expert feature recognition based on multiple-sensor information to solve the conflict which three obtained eigenvectors give rise to. [Results] Matching the expert feature from C-DBLP, the degree of similarity is close to thirty-nine percent, which can be accepted among similar methods. [Limitations] On one hand, many experts identified are from universities and institutes, correspondingly, academic resources for feature recognition are of great account. On the other hand, the site collection for Web sensor can be extended further. [Conclusions] Under the circumstance of controlled relationship between keywords, this method can be applied to many aspects, such as the construction of expert teams, the recommendation and retrieval of experts, and so on.

Key wordsFeature recognition      Sensor      Social network      Resource balancing degree     
Received: 17 December 2013      Published: 19 May 2014
:  G353  

Cite this article:

Li Gang, Ye Guanghui. Research on Information Fusion for Multiple-sensor Expert Features. New Technology of Library and Information Service, 2014, 30(4): 27-33.

URL:     OR

[1] 席运江,党延忠.基于知识网络的专家领域知识发现及表示方法[J].系统工程,2005,23(8):110-115.(Xi Yunjiang,Dang Yanzhong.The Discovery and Representation Methods of Expert Domain Knowledge Based on Knowledge Network[J].Systems Engineering,2005,23(8):110-115.)
[2] 彭红彬,王军.虚拟社区中知识交流的特点分析——基于CSDN技术论坛的实证研究[J].现代图书情报技术,2009(4):44-49.(Peng Hongbin,Wang Jun.Topology of the Knowledge Communication Network in Virtual Communities——Based on CSDN[J].New Technology of Library and Information Service,2009(4):44-49.)
[3] 巩军,刘鲁.基于个人知识地图的专家推荐[J].管理学报,2011,8(9):1365-1371.(Gong Jun,Liu Lu.Expert Recommen­dation Based on Expert's Personal Knowledge Map[J].Chinese Journal of Management,2011,8(9):1365-1371.)
[4] 程少川,李高,郑俊.面向跨学科创新合作的知识推送方法研究[J].情报学报,2013,32(2):148-153.(Cheng Shaochuang,Li Gao,Zheng Jun.Knowledge Push Method Oriented to Interdisciplinary Innovation Collaborators[J].Journal of the China Society for Scientific and Technical Information,2013,32(2):148-153.)
[5] 夏立新,王忠义,张进.图书馆知识专家地图的XTM构建方法研究[J].中国图书馆学报,2009,35(2):47-52.(Xia Lixin,Wang Zhongyi,Zhang Jin.XTM Construction of Library Expert Knowledge Map[J].Journal of Library Science in China,2009,35(2):47-52.)
[6] Fang Y,Si L,Mathur A.FacFinder:Search for Expertise in Academic Institutions[R].West Lafayette:Purdue University,2008.
[7] 廖开际,叶东海,闫健峻,等.基于加权语义网的专家知识发现及表示方法[J].情报学报,2012,31(1):60-64.(Liao Kaiji,Ye Donghai,Yan Jianjun,et al.Expert Knowledge Discovery and Representation Based on Weighted Semantic Networks[J].Journal of the China Society for Scientific and Technical Information,2012,31(1):60-64.)
[8] Lin C,Ehrlich K,Griffiths-Fisher V,et al.SmallBlue:People Mining for Expertise Search[J].IEEE MultiMedia,2008,15(1):78-84.
[9] 陆伟,韩曙光.组织专家的检索系统设计与实现[J].情报学报,2008,27(5):657-663.(Lu Wei,Han Shuguang.Design and Implementation of Organization Expert Search System[J].Journal of the China Society for Scientific and Technical Information,2008,27(5):657-663.)
[10] 王曰芬,王雪芬,杨小晓.基于社会网络的科技咨询专家库的构建方案和流程设计[J].情报学报,2012,31(2):116-125.(Wang Yuefen,Wang Xuefen,Yang Xiaoxiao.Research on Construction Schema and Program Design of Social Network-based Expert Database in Scientific and Technical Consulting[J].Journal of the China Society for Scientific and Technical Information,2012,31(2):116-125.)
[11] Moreira C,Wichert A.Finding Academic Experts on a MultiSensor Approach Using Shannon's Entropy[J].Expert Systems with Applications,2013,40(14):5740-5754.
[12] Liu D,Chen Y,Kao W,et al.Integrating Expert Profile,Reputation and Link Analysis for Expert Finding in Question-answering Websites[J].Information Processing &Management,2013,49(1):312-329.
[13] Balog K,Azzopardi L,de Rijke M.Formal Models for Expert Finding in Enterprise Corpora[C].In:Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'06).New York:ACM,2006:43-50.
[14] 吴贞东,向生建,曾德胜.一种多维集合划分负载均衡资源优化分配算法[J].计算机应用,2007,27(5):1208-1209,1213.(Wu Zhendong,Xiang Shengjian,Zeng Desheng.A Multiple Dimension Set Partitioning Load Balancing Resource Optimization Allocation Algorithm[J].Journal of Computer Applications,2007,27(5):1208-1209,1213.)

[1] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[2] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[3] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[4] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[5] Xu Yabin, Sun Qiutian. Identifying Leaders and Dissemination Paths of Public Opinion[J]. 数据分析与知识发现, 2021, 5(2): 32-42.
[6] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[7] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[8] Liqing Qiu,Wei Jia,Xin Fan. Influence Maximization Algorithm Based on Overlapping Community[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[9] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[10] Xinrui Wang,Yue He. Predicting Stock Market Fluctuations with Social Media Behaviors: Case Study of Sina Finance Blog[J]. 数据分析与知识发现, 2019, 3(11): 108-119.
[11] Wu Jiehua,Shen Jing,Zhou Bei. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[12] Ye Guanghui,Hu Jinglan,Xu Jian,Xia Lixin. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[13] Guo Bo,Zhao Junrui,Sun Yu. Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[14] Wang Feifei,Zhang Shengtai. Analyzing Information Behaviors of Mobile Social Network Users[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[15] Zhang Ling,Luo Manman,Zhu Lijun. Analyzing Information Dissemination on Social Networks[J]. 数据分析与知识发现, 2018, 2(2): 46-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938