Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (6): 71-77    DOI: 10.11925/infotech.1003-3513.2015.06.11
Current Issue | Archive | Adv Search |
Feature Recognition of Niche Expert——Empirical Analysis Based on MetaFilter Dataset
Li Gang, Ye Guanghui, Zhang Yan
Center for the Studies of Information Resources, Wuhan University, Wuhan 430072, China
Export: BibTeX | EndNote (RIS)      

[Objective] In order to fully get expert resource, this paper explores the feature recognition method of niche expert. [Methods] Firstly, take advantage of user activity data from a famous community weblog named MetaFilter to construct user interaction network. Secondly, make statistics of node network structure indexes, such as betweenness centrality, clustering coefficient. Finally, feature and role of node in different period is distinguished via the combination of cluster analysis and time series analysis. [Results] This paper obtains the niche expert collection through comparative analysis of network statistics indexes of different clusters, the classification of niche experts are further refined based on temporal changes in the collection. [Limitations] Role identification and migration analysis should be expanded to more sections, not only the music section, so that the “stability-change” feature of niche experts under different semantic circumstance can be further discussed. [Conclusions] Niche expert is an effective supplement to the existing collection of experts, the method proposed in this paper can be applied to many aspects, such as the construction of expert team, the recommendations and retrieval of experts, and so on.

Key wordsNiche expert      Feature recognition      Social semantic network      Clustering analysis      Role migration     
Received: 17 November 2014      Published: 08 July 2015
:  G350  

Cite this article:

Li Gang, Ye Guanghui, Zhang Yan. Feature Recognition of Niche Expert——Empirical Analysis Based on MetaFilter Dataset. New Technology of Library and Information Service, 2015, 31(6): 71-77.

URL:     OR

[1] 李纲, 叶光辉. 多源专家特征信息融合研究[J]. 现代图书情报技术, 2014(4): 27-33. (Li Gang, Ye Guanghui. Research on Information Fusion for Multiple-sensor Expert Features [J]. New Technology of Library and Information Service, 2014(4): 27-33.)
[2] 廖开际, 叶东海, 闫健峻, 等. 基于加权语义网的专家知识发现及表示方法[J]. 情报学报, 2012, 31(1): 60-64. (Liao Kaiji, Ye Donghai, Yan Jianjun, et al. Expert Knowledge Discovery and Representation Based on Weighted Semantic Network [J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(1): 60-64.)
[3] Lin C Y, Ehrlich K, Griffiths-Fisher V, et al. SmallBlue: People Mining for Expertise Search [J]. IEEE MultiMedia, 2008, 15(1): 78-84.
[4] Moreira C, Wichert A. Finding Academic Experts on a MultiSensor Approach Using Shannon's Entropy [J]. Expert Systems with Applications, 2013, 40(14): 5740-5754.
[5] Lazarsfeld P F, Berelson B, Gaudet H. The People's Choice [M]. New York: Columbia University Press, 1968.
[6] 尹衍腾, 李学明, 蔡孟松. 基于用户关系与属性的微博意见领袖挖掘方法[J]. 计算机工程, 2013, 39(4): 184-189. (Yin Yanteng, Li Xueming, Cai Mengsong. Mining Method of Microblog Opinion Leader Based on User Relationship and Attribute [J]. Computer Engineering, 2013, 39(4): 184-189.)
[7] 蒋翠清, 朱义生, 丁勇. 基于UGC下的意见领袖发现研究[J]. 情报杂志, 2011, 30(10): 82-85. (Jiang Cuiqing, Zhu Yisheng, Ding Yong. On Discovery of Opinion Leaders Based on UGC [J]. Journal of Intelligence, 2011, 30(10): 82-85.)
[8] Xu W, Blasiola S, Sang Y M, et al. Predicting Opinion Leaders in Twitter Activism Networks: The Case of the Wisconsin Recall Election [J]. American Behavioral Scientist, 2014, 58(10): 1278-1293.
[9] Zhang W, He H, Cao B. Identifying and Evaluating the Internet Opinion Leader Community Based on K-clique Clustering [J]. Neural Computing and Applications, 2014, 25(3-4): 595-602.
[10] 顾品浩, 蒋冠. 突发性公共事件中的网络意见领袖分析——以“杨达才事件”为例[J]. 情报杂志, 2013, 32(5): 20-24. (Gu Pinhao, Jiang Guan. Analysis on Network Opinion Leaders in Public Emergencie—A Case Study of YANG Dacai Event [J]. Journal of Intelligence, 2013, 32(5): 20-24.)
[11] 李纲, 叶光辉. ShareNet情景下的竞争情报组织模型研究[J]. 情报理论与实践, 2014, 37(4): 65-70, 76. (Li Gang, Ye Guanghui. The Research on Competitive Intelligence Organization Model in ShareNet Scenario [J]. Information Studies: Theory & Application, 2014, 37(4): 65-70,76.)
[12] 梁欣如, 许庆瑞. 创新进化机制剖析——以西门子为例[J].中国软科学, 2004(10): 92-97, 120. (Liang Xinru, Xu Qingrui. Analysis of the Evolutionary Mechanism of Innovation—Case Study of Siemens [J]. China Soft Science, 2004(10): 92-97, 120.)
[13] Price D. Little Science, Big Science [M]. New York: Columbia Press, 1965: 53-53.

[1] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[2] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[3] Li Gang, Ye Guanghui. Research on Information Fusion for Multiple-sensor Expert Features[J]. 现代图书情报技术, 2014, 30(4): 27-33.
[4] Teng Guangqing,Bi Qiang. Market Segmentation of Digital Library Users Based on Concept Lattice ——Conceptual Clustering Analysis of Digital Library Users[J]. 现代图书情报技术, 2010, 26(2): 7-11.
[5] Wang Cuiying(Compiler). Study on Tag Clustering Analysis[J]. 现代图书情报技术, 2008, 24(5): 67-71.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938