Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (7-8): 48-57    DOI: 10.11925/infotech.1003-3513.2015.07.07
Current Issue | Archive | Adv Search |
Research on the Framework of Semantic Organization Model for Research Data in the e-Science Environment
Ma Yumeng1, Guo Jinjing1,2, Wang Fang1
1 National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to build a general semantic model for the organization and description of research data in the e-Science environment, providing semantic layer of data organization for building semantic computing environment in digital repositories. [Methods] Based on the analysis on organization patterns for research data, this paper designs semantic organization architecture of research data and builds Ontology models for each component by concept analysis and Ontology modeling. At last, this Ontology model is applied to the design of a prototype system and experiments are made on some application. [Results] This model can achieve relatively better result in semantic linked organization of research data. [Limitations] The semantic supporting effect of this model remains to be further validated, which needs to be based on other modules' application experiments. [Conclusions] This Ontology model can achieve semantic organization of research data to provide the foundation of semantic knowledge organization for resource building and services of knowledge platform.

Received: 21 November 2014      Published: 25 August 2015
:  G250  

Cite this article:

Ma Yumeng, Guo Jinjing, Wang Fang. Research on the Framework of Semantic Organization Model for Research Data in the e-Science Environment. New Technology of Library and Information Service, 2015, 31(7-8): 48-57.

URL:     OR

[1] Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery [EB/OL]. [2014-08-11].
[2] Pampel H, Dallmeier-Tiessen S. Open Research Data: From Vision to Practice [EB/OL]. [2014-08-11].
[3] PANGAEA. PANGAEA is Open to Any Project or Individual Scientist to Archive and Publish Data [EB/OL]. [2014-11-17].
[4] Nature Publishing Group. Availability of Data, Materials and Methods [EB/OL]. [2014-11-17]. authors/policies/availability.html.
[5] Nature Publishing Group. Scientific Data [EB/OL]. [2014- 08-11].
[6] 地球系统科学数据共享平台. 地球系统科学元数据标准[EB/OL]. [2014-12-26]. data/docs/schemas/GeoCore2.xsd. (Data Sharing Infrastructure of Earth System Science. geodataCoreMeta [EB/OL]. [2014-12-26]. schemas/GeoCore2.xsd.)
[7] White H C, Carrier S, Greenberg J, et al. The Dryad Data Repository: A Singapore Framework Metadata Architecture in a DSpace Environment [C]. In: Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications, 2008.
[8] Sufi S, Mathews B. CCLRC Scientific Metadata Model: Version 2 [EB/OL]. [2014-08-20]. bitstream/485/csmdm.version-2.pdf.
[9] Manghi P, Bolikowski L, Manola N, et al. OpenAIREplus: The European Scholarly Communication Data Infrastructure [J/OL]. D-Lib, 2012, 18(9-10). [2014-08-20]. http://www.
[10] Lowe B. DataStaR: Bridging XML and OWL in Science Metadata Management [J]. Communications in Computer and Information Science, 2009, 46: 141-150.
[11] Lagoze C, Hunter J. The ABC Ontology and Model [EB/OL]. [2014-09-03]. paper-26.pdf.
[12] Hunter J. Scientific Publication Packages-A Selective Approach to the Communication and Archival of Scientific Output [J]. International Journal of Digital Curation, 2008, 1(1): 33-52.
[13] Madin J, Bowers S, Schildhauer M, et al. An Ontology for Describing and Synthesizing Ecological Observation Data [J]. Ecological Informatics, 2007, 2(3):279-296.
[14] Bekiari C, Doerr M, Allocca C, et al. MARINETLO-DRAFT [EB/OL]. [2014-09-03]. documentation/MarineTLO_documentation_v3.pdf.
[15] Humphrey C. e-Science and the Life Cycle of Research [EB/OL]. [2014-09-12]. humphrey/lifecycle-science060308.doc.
[16] PLOS. "HowOpenIsIt?®" Open Access Spectrum (OAS) [EB/OL]. [2014-09-16]. howopenisit/.
[17] The Royal Society. Science as an Open Enterprise [EB/OL]. [2014-09-16]. sape/2012-06-20-saoe.pdf.
[18] Martone M. Joint Declaration of Data Citation Principles - FINAL [EB/OL]. [2014-09-08]. datacitation.
[19] Starr J, Ammann N, Ashton J, et al. DataCite Metadata Schema for the Publication and Citation of Research Data [R/OL]. [2014-12-23]. l-3/doc/DataCite-MetadataKernel_v3.1.pdf.
[20] Corson-Rikert J, Holmes K, Lowe B, et al. Introduction to VIVO [EB/OL]. [2015-01-19]. vivo2013/workshops/introduction/IntroToVIVO.pdf.
[21] Rapid Urbanization of Red Foxes in Estonia: Distribution, Behaviour, Attacks on Domestic Animals and Health-Risks Related to Zoonotic Diseases [EB/OL]. [2014-12-23].

[1] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[2] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[3] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[4] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[5] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[6] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[7] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[8] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[9] Chang Zhijun,Qian Li,Xie Jing,Wu Zhenxin,Zhang Hu,Yu Qianqian,Wang Ying,Wang Yongji. Big Data Platform for Sci-Tech Literature Based on Distributed Technology[J]. 数据分析与知识发现, 2021, 5(3): 69-77.
[10] Hu Shaohu,Zhang Yingyi,Zhang Chengzhi. Review of Keyword Extraction Studies[J]. 数据分析与知识发现, 2021, 5(3): 45-59.
[11] Liu Tong, Liu Chen, Ni Weijian. A semi-supervised Chinese sentiment analysis method based on multi-level data augmentation [J]. 数据分析与知识发现, 0, (): 1-.
[12] Wang Hongbin, Wang Jianxiong, Zhang Yafei, Yang Heng. Topic Recognition Research on Topic Imbalanced News Text Data Set [J]. 数据分析与知识发现, 0, (): 1-.
[13] Sifan Zhang, Zhendong Niu, Hao Lu, Yifan Zhu, Rongrong Wang. Graph Convolution Embedding and Feature Cross Based Literature Citation Prediction Method:Taking the Transportation Field as An Example [J]. 数据分析与知识发现, 0, (): 1-.
[14] Qi Ruihua, Jian Yue, Guo Xu, Guan Jinghua, Yang Mingxi. Sentiment Analysis of Cross-Domain Product Reviews Based on Feature Fusion and Attention Mechanism [J]. 数据分析与知识发现, 0, (): 1-.
[15] Li Jiao, Huang Yongwen, Luo Tingting, Zhao Ruixue, Xian Guojian. Automatic Classification based on Multi-factor Algorithm [J]. 数据分析与知识发现, 0, (): 1-.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938