Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (7-8): 73-79    DOI: 10.11925/infotech.1003-3513.2015.07.10
Current Issue | Archive | Adv Search |
A Comparative Study of Mobile Reading Applications Based on User Experiences
Wu Dan, Ran Aihua
School of Information Management, Wuhan University, Wuhan 430072, China
Export: BibTeX | EndNote (RIS)      

[Objective] Make a comparison between three typical mobile reading applications, including iReader, DuoKan and Kindle. [Methods] Design evaluation metrics and a user experiment for mobile reading applications. After finishing the reading assignments, participants use a five-point scale questionnaire to make ratings based on their own experiences. And statistical methods are used to analyze the results of the user experiment. [Results] DuoKan is the best in nine indicators, including the layout of the interface, the experience of probation, the reading function, the communication, the user friendly and easy to use, the aesthetic design, the practicability, the necessaries, and the overall experience. iReader is the best in four indicators, including the installation process of applications, the individual center, the response speed, and the experience of paying. And Kindle is the best in the indicator of content quality. [Limitations] There is lack of different types of enough users who participating the experiment. [Conclusions] DuoKan is the mobile application with the best user experience. To improve the user experience, the mobile reading application needs to refine the classification of users, to enhance the quality of its electronic books and to improve the aesthetic design.

Received: 13 January 2015      Published: 25 August 2015
:  G250  

Cite this article:

Wu Dan, Ran Aihua. A Comparative Study of Mobile Reading Applications Based on User Experiences. New Technology of Library and Information Service, 2015, 31(7-8): 73-79.

URL:     OR

[1] 中国互联网络信息中心. 中国移动互联网调查研究报告[R/OL]. [2014-11-01]. http: // (China Internet Network Information Center. Investigation Report of China Mobile Internet [R/OL]. [2014-11-01]. http://www.
[2] 李雁行, 王志国. 社会化阅读环境下移动阅读APP对移动图书馆APP建设的启示[J]. 图书馆学研究, 2014(20): 54-57. (Li Yanxing, Wang Zhiguo. Proposals from Mobile Reading APP Services to APP Services of Mobile Library in Social Reading Environment [J]. Research on Library Science, 2014(20): 54-57.)
[3] 黄晓斌, 付跃安. 基于用户体验的移动阅读终端可用性评价[J]. 图书馆论坛, 2011, 31(4): 6-9. (Huang Xiaobin, Fu Yuean. Usability Evaluation of Mobile Reading Devices in View of Patron Reviews [J]. Library Tribune, 2011, 31(4): 6-9.)
[4] 胡玮. 移动阅读APP 的调查分析与启示[J]. 图书馆研究, 2014, 44(1): 66-68. (Hu Wei. The Investigation Analysis and Enlightenment of Mobile Reading APP[J]. Library Research, 2014, 44(1): 66-68.)
[5] 孟垂实, 王晶晶. 移动阅读应用中的个性化在线推荐研究[J]. 数据通信, 2013(4): 5-9. (Meng Chuishi, Wang Jingjing. Research on Online Personalized Recommendation of Mobile Reading Application[J]. Data Communication, 2013(4): 5-9.)
[6] Petter S, DeLone W, McLean E. Measuring Information Systems Success: Models, Dimensions, Measures, and Interrelationships [J]. European Journal of Information Systems, 2008, 17(3): 236-263.
[7] Van Dyke T P, Kappelman L A, Prybutok V R. Measuring Information Systems Service Quality: Concerns on the Use of the SERVQUAL Questionnaire [J]. MIS Quarterly, 1997, 21(2): 195-208.
[8] Klein H K, Myers M D. A Set of Principles for Conducting and Evaluating Interpretive Field Studies in Information Systems [J]. MIS Quarterly, 1999, 23(1): 67-93.
[9] 王茜, 张成昱. 清华大学手机图书馆用户体验调研及可用性设计[J]. 图书情报工作, 2013, 57(4): 25-31. (Wang Qian, Zhang Chengyu. Investigation of Users' Experience and Usability Design in Tsinghua Mobile Library [J]. Library and Information Service, 2013, 57(4): 25-31.)
[10] 林燕. 用户体验设计在图书馆用户服务系统中的应用[J]. 图书馆学刊, 2011(1): 69-71. (Lin Yan. The Application of User Experience Design in the Library User Service System [J]. Journal of Library Science, 2011(1): 69-71.)

[1] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[2] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[3] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[4] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[5] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[6] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[7] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[8] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[9] Chang Zhijun,Qian Li,Xie Jing,Wu Zhenxin,Zhang Hu,Yu Qianqian,Wang Ying,Wang Yongji. Big Data Platform for Sci-Tech Literature Based on Distributed Technology[J]. 数据分析与知识发现, 2021, 5(3): 69-77.
[10] Hu Shaohu,Zhang Yingyi,Zhang Chengzhi. Review of Keyword Extraction Studies[J]. 数据分析与知识发现, 2021, 5(3): 45-59.
[11] Liu Tong, Liu Chen, Ni Weijian. A semi-supervised Chinese sentiment analysis method based on multi-level data augmentation [J]. 数据分析与知识发现, 0, (): 1-.
[12] Wang Hongbin, Wang Jianxiong, Zhang Yafei, Yang Heng. Topic Recognition Research on Topic Imbalanced News Text Data Set [J]. 数据分析与知识发现, 0, (): 1-.
[13] Sifan Zhang, Zhendong Niu, Hao Lu, Yifan Zhu, Rongrong Wang. Graph Convolution Embedding and Feature Cross Based Literature Citation Prediction Method:Taking the Transportation Field as An Example [J]. 数据分析与知识发现, 0, (): 1-.
[14] Qi Ruihua, Jian Yue, Guo Xu, Guan Jinghua, Yang Mingxi. Sentiment Analysis of Cross-Domain Product Reviews Based on Feature Fusion and Attention Mechanism [J]. 数据分析与知识发现, 0, (): 1-.
[15] Li Jiao, Huang Yongwen, Luo Tingting, Zhao Ruixue, Xian Guojian. Automatic Classification based on Multi-factor Algorithm [J]. 数据分析与知识发现, 0, (): 1-.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938