Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (7-8): 122-130    DOI: 10.11925/infotech.1003-3513.2015.07.16
Current Issue | Archive | Adv Search |
e-BRM: A Multi-dimensionality Reputation Model for e-Barter
Li Cong1,2, Ma Li3
1 College of Computer Science, Sichuan Normal University, Chengdu 610068, China;
2 Katz Graduate School of Business, University of Pittsburgh, Pittsburgh 15213, USA;
3 Sichuan Normal University Library, Chengdu 610068, China
Export: BibTeX | EndNote (RIS)      

[Objective] A multi-dimensionality reputation model, named e-BRM, is proposed to surpass (1, 0, -1) scoring system used in e-Barter (one type of emerging online C2C market). [Methods] Based on Wilson score interval and uniform distribution, e-BRM can calculate positive ratio and positive coverage ratio respectively. Meanwhile, time-delay factor, negative punishing factor and real name authentication factor are designed in e-BRM to be further aggregated as barter's transaction value. [Results] The positive ratio, coverage ratio and transaction value are aggregated as barter's reputation degree by e-BRM. The aggregated value can describe barter's true reputation degree better than that of (1, 0, -1) scoring system. [Limitations] For the application of e-BRM, an online updating mechanism should be designed for improving real-time performance. [Conclusions] Simulation experimental results show the validity of e-BRM, thus barters can make reasonable deal decisions based on reputation degree for decreasing transaction risk.

Received: 06 January 2015      Published: 25 August 2015
:  C931  

Cite this article:

Li Cong, Ma Li . e-BRM: A Multi-dimensionality Reputation Model for e-Barter. New Technology of Library and Information Service, 2015, 31(7-8): 122-130.

URL:     OR

[1] 吴剑云, 张嵩. 电子易货资源匹配模型研究[J]. 管理工程学报, 2012, 26(1): 56-60. (Wu Jianyun, Zhang Song. A Study on the Model for Resources Matching of Electronic Bartering [J]. Journal of Industrial Engineering and Engineering Management, 2012, 26(1): 56-60.)
[2] Akerlof G A. The Market for "Lemon": Qualitative Uncertainly and the Market Mechanism [J]. The Quarterly Journal of Economics, 1970, 84(3): 488-500.
[3] 中华人民共和国工业和信息化部. 电子商务"十二五"发展规划[R]. 北京: 工业和信息化部, 2012. (The Ministry of Industry and Information Technology of the People's Republic of China. The 12th Five-year Plan for National Electronic Commerce Development[R]. Beijing: The Ministry of Industry and Information Technology of the People's Republic of China, 2012.)
[4] Resnick P, Zeckhauser R, Friedman E, et al. Reputation Systems: Facilitating Trust in Internet Interactions [J]. Communications of the ACM, 2000, 43(12): 45-48.
[5] Fan M, Tan Y, Whinston A B. Evaluation and Design of Online Cooperative Feedback Mechanisms for Reputation Management[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(2): 244-254.
[6] Resnick P, Zeckhauser R, Swanson J, et al. The Value of Reputation on eBay: A Controlled Experiment [J]. Experimental Economics, 2006, 9(2): 79-101.
[7] Bolton G E, Katok E, Ockenfels A. How Effective are Electronic Reputation Mechanisms? An Experimental Investigation [J]. Management Science, 2004, 50(11): 1587-1602.
[8] Fouss F, Achbany Y, Saerens M. A Probabilistic Reputation Model Based on Transaction Ratings [J]. Information Sciences, 2010, 180(11): 2095-2123.
[9] Wu F, Li H, Kuo Y. Reputation Evaluation for Choosing a Trustworthy Counterparty in C2C E-commerce [J]. Electronic Commerce Research and Applications, 2011, 10(4): 428-436.
[10] 纪淑娴, 胡培, 程飞. 在线信誉管理系统中信用度计算模型研究[J]. 预测, 2008, 27(4): 59-65. (Ji Shuxian, Hu Pei, Cheng Fei. Research on Credit Calculation Model in Online Reputation Management System [J]. Forecasting, 2008, 27(4): 59-65.)
[11] 刘锡文, 蒋俊杰. 社交网络中基于用户投票的推荐机制[J]. 东南大学学报:自然科学版, 2013, 43(2): 302-306. (Liu Xiwen, Jiang Junjie. Recommendation Mechanism Based on User Voting in the Social Network [J]. Journal of Southeast University: Natural Science Edition, 2013, 43(2): 302-306.)
[12] Huberman B A, Wu F. The Dynamics of Reputations [J]. Journal of Statistical Mechanics: Theory and Experiment, 2004, 4: 1-17.
[13] Wikimedia. Binomial Proportion Confidence Interval [EB/ OL]. [2014-10-24]. proportion_confidence_ interval#Wilson_score_interval.
[14] 李聪, 梁昌勇. 面向C2C电子商务的多维信誉评价模型[J]. 管理学报, 2012, 9(2): 204-211. (Li Cong, Liang Changyong. Multi-dimensionality Reputation Evaluation Model for C2C E-commerce [J]. Chinese Journal of Management, 2012, 9(2): 204-211.)
[15] Özturan C. Resource Bartering in Data Grids [J]. Scientific Programming, 2004, 12(3): 155-168.
[16] 李慧, 刘东苏. 消除用户主观评价差异的电子商务信誉模型[J]. 现代图书情报技术, 2012(2): 48-52. (Li Hui, Liu Dongsu. E-commerce Reputation Model Based on Elimination Differences of User Subjective Evaluation [J]. New Technology of Library and Information Service, 2012(2): 48-52.)
[17] 李聪, 梁昌勇. 适应用户兴趣变化的协同过滤增量更新机制[J]. 情报学报, 2010, 29(1): 59-66. (Li Cong, Liang Changyong. Incremental Updating Mechanism of Collaborative Filtering in Accordance with User Interest Change [J]. Journal of the China Society for Scientific and Technical Information, 2010, 29(1): 59-66.)

[1] Guan Peng,Wang Yuefen,Jin Jialin,Fu Zhu. Developments of Tech-Innovation Network for Patent Cooperation: Case Study of Speech Recognition in China[J]. 数据分析与知识发现, 2021, 5(1): 112-127.
[2] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[3] Yu Bengong,Zhang Peihang,Xu Qingtang. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[4] Liu Lina,Qi Jiayin,Zhang Zhenping,Zeng Dan. Analyzing Impacts of Brand Reputation on Online Sales Based on Massive Commodity Reviews and Brand[J]. 数据分析与知识发现, 2018, 2(9): 10-21.
[5] Jiang Cuiqing,Song Kailun,Ding Yong,Liu Yao. Identifying Potential Customers Based on User-Generated Contents[J]. 数据分析与知识发现, 2018, 2(3): 1-8.
[6] Zhang Lifan, Zhao Kai. Study on the Internet Public Opinion Dissemination Model with Discussion Under the Effect of Media[J]. 现代图书情报技术, 2015, 31(11): 60-67.
[7] Zhang Yongyun, Zhang Shengtai. Star Effect and Broker Effect in Social Media Knowledge Collaboration Network: Discovery from Wikipedia Social Media[J]. 现代图书情报技术, 2015, 31(4): 72-78.
[8] Zhang Xiaoyan, Zhang Pengzhu, Li Jia, Liu Jingfang. Research on Picture Recommendation for Creativity Support System[J]. 现代图书情报技术, 2014, 30(6): 94-99.
[9] Zhao Yuxiang,Peng Xixian. Media as a Community? Literature Based Topic Evaluation in Information Systems Discipline[J]. 现代图书情报技术, 2014, 30(1): 56-65.
[10] Li Qing, Zhu Hengmin, Yang Dongchao. The Topic Evolution Model of the Public Opinion in Micro-Blogging Network[J]. 现代图书情报技术, 2013, (12): 74-80.
[11] Zhang Qi, Zhang Yinghua. Research on an Approach of Context Aware Collaborative Recommend for Scientific & Technical Literatures[J]. 现代图书情报技术, 2012, 28(2): 10-17.
[12] Fan Bo. The Computation Method for Key Spatial Information in Emergency Information System[J]. 现代图书情报技术, 2011, 27(9): 54-59.
[13] Li Cong. Review of Scalability Problem in E-commerce Collaborative Filtering[J]. 现代图书情报技术, 2010, 26(11): 37-41.
[14] Li Cong. ECRec:e-Commerce Personalized Recommendation Management Based on Collaborative Filtering[J]. 现代图书情报技术, 2009, (10): 34-39.
[15] Gan Liren,Xu Yingnan. An Investigation on Factors Affecting the User's Acceptance Behavior of Enterprise Information System——An Example of ERP System[J]. 现代图书情报技术, 2009, 3(2): 71-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938