Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (12): 34-41    DOI: 10.11925/infotech.1003-3513.2015.12.06
Current Issue | Archive | Adv Search |
An Opinion Evolution Model Based on the Behavior of Micro-blog Users
Yang Ning1, Huang Feihu2, Wen Yi1, Chen Yunwei1
1 Chengdu Document and Information Center, Chinese Academy of Sciences, Chengdu 610041, China;
2 College of Computer Science, Sichuan University, Chengdu 610065, China
Export: BibTeX | EndNote (RIS)      

[Objective] Explore an opinion evolution model based on the information dissemination of micro-blog. [Methods] Analyzing three kinds of user behavior in the micro-blog network (including publishing, review, forwarding), this paper proposes a new opinion evolution model, which introduces the concept of Sensitivity and Activity to measure user's enthusiasm for getting new information and discussing with others. Based on the NetLogo platform, this paper discusses the influence of the parameters on the result of evolution firstly, and then contrasts with HK model by computer simulation. [Results] The trust threshold has the effect on the user's opinion. Sensitivity has a promotion effect on the communication of information. Activity can speed up the dissemination of information and promote user's opinion to be stable. [Limitations] At present, the research of the opinion dynamics is mainly based on the theoretical analysis and the experiment, so the model also need to expand data size to verify the adaptability of the theoretical model. [Conclusions] The presented model is based on the behavior of micro-blog users. The experimental results show that the model can describe the complex information dissemination and the update of the opinion in the micro-blog network.

Received: 13 May 2015      Published: 06 April 2016
:  TP393  

Cite this article:

Yang Ning, Huang Feihu, Wen Yi, Chen Yunwei. An Opinion Evolution Model Based on the Behavior of Micro-blog Users. New Technology of Library and Information Service, 2015, 31(12): 34-41.

URL:     OR

[1] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制[J]. 物理学报, 2012, 61(23): 544-550. (Gu Yiran, Xia Lingling. The Propagation and Inhibition of Rumors in Online Social Network [J]. Acta Physica Sinica, 2012, 61(23): 544-550.)
[2] Wu M, Guo J, Zhang C, et al. Social Media Communication Model Research Bases on Sina-weibo [C]. In: Proceedings of the 6th International Conference on Intelligent Systems and Knowledge Engineering, Shanghai, China. 2011.
[3] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型[J]. 物理学报, 2014, 63(16):12-20. (Huang Feihu, Peng Jian, Ning Limiao. Opinion Evolution Model of Social Network Based on Information Entropy [J]. Acta Physica Sinica, 2014, 63(16): 12-20.)
[4] Ding F, Liu Y. Modeling Opinion Interactions in a BBS Community [J]. European Physical Journal B, 2010, 78(2): 245-252.
[5] 王晶, 朱珂, 汪斌强. 基于用户社会属性及行为特征吸引度的微博粉丝网络演化模型[J]. 计算机应用, 2013, 33(10): 2753-2756, 2761. (Wang Jing, Zhu Ke, Wang Binqiang. Microblog Fans Network Evolving Model Based on User Social Characteristics and Attractiveness of Behavior Properties [J]. Journal of Computer Applications, 2013, 33(10): 2753-2756, 2761.)
[6] 胡海波, 王科, 徐玲, 等. 基于复杂网络理论的在线社会网络分析[J]. 复杂系统与复杂性科学, 2008, 5(2): 1-14. (Hu Haibo, Wang Ke, Xu Ling, et al. Analysis of Online Social Networks Based on Complex Network Theory [J]. Complex Systems and Complexity Science, 2008, 5(2): 1-14.)
[7] 闫强, 吴联仁, 郑兰. 微博社区中用户行为特征及其机理研究[J]. 电子科技大学学报, 2013, 42(3): 328-333. (Yan Qiang, Wu Lianren, Zheng Lan. Research on User Behavior Characters and Mechanism in Microblog Communities [J]. Journal of University of Electronic Science and Technology of China, 2013, 42(3): 328-333.)
[8] Yu L, Asur S, Huberman B A. What Trends in Chinese Social Media [C]. In: Proceedings of the 5th International Workshop on Social Network Mining and Analysis (SNA-KDD), San Diego, CA, USA. 2011.
[9] 樊兴华, 赵静, 方滨兴, 等. 影响力扩散概率模型及其用于意见领袖发现研究[J]. 计算机学报, 2013, 36(2): 360-367. (Fan Xinghua, Zhao Jing, Fang Binxing, et al. Influence Diffusion Probability Model and Utilizing It to Identify Network Opinion Leader [J]. Chinese Journal of Computers, 2013, 36(2): 360-367.)
[10] Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the Dynamics of the News Cycle [C]. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009:497-506.
[11] 陈慧娟, 郑啸, 陈欣. 微博网络信息传播研究综述[J]. 计算机应用研究, 2014, 31(2): 333-338. (Chen Huijuan, Zheng Xiao, Chen Xin. Survey on Information Diffusion in Microblog [J]. Application Research of Computers, 2014, 31(2): 333-338.)
[12] Lee S H, Kim P J, Jeong H. Statistical Properties of Sampled Networks [J]. Physical Review E, 2006, 73(1): Article No. 016102.
[13] 李勇军. 在线社交网络的拓扑特性分析[J]. 复杂系统与复杂性科学, 2012, 9(3): 22-37. (Li Yongjun. Analysis on Topological Features of Online Social Networks [J]. Complex Systems and Complexity Science, 2012, 9(3): 22-37.)
[14] 周而重, 钟宁, 黄佳进. 基于意见领袖引导作用的网络舆论演化研究[J]. 计算机科学, 2013, 40(11): 287-290. (Zhou Erzhong, Zhong Ning, Huang Jiajin. Research on Evolution of Online Consensus Based on Opinion Leader's Guiding Role [J]. Computer Science, 2013, 40(11): 287-290.)
[15] 丁雪峰, 胡勇, 赵文, 等. 网络舆论意见领袖特征研究[J]. 四川大学学报: 工程科学版, 2010, 42(2): 145-149. (Ding Xuefeng, Hu Yong, Zhao Wen, et al. A Study on the Characters of the Public Opinion Leader in Web BBS [J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(2): 145-149.)
[16] Hegselmann R, Krause U. Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation [J]. Journal of Artificial Societies and Social Simulation, 2002, 5(3): Article No. 2.
[17] 胡艳丽. 在线社会网络中的舆论演化关键技术研究[D]. 长沙: 国防科学技术大学, 2011. (Hu Yanli. Research on Key Technologies of Public Opinion Evolution in Online Social Networks [D]. Changsha: National University of Defense Technology, 2011.)
[18] Huang J, Cheng X Q, Shen H W, et al. Exploring Social Influence via Posterior Effect of Word-of-Mouth Recommendations [C]. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012: 573-582.
[19] 王辉, 韩江洪, 邓林, 等. 基于移动社交网络的谣言传播动力学研究[J]. 物理学报, 2013, 62(11): 96-107. (Wang Hui, Han Jianghong, Deng Lin, et al. Dynamics of Rumor Spreading in Mobile Social Networks [J]. Acta Physica Sinica, 2013, 62(11): 96-107.)
[20] Martins A C R, Galam S. Building up of Individual Inflexibility in Opinion Dynamics [J]. Physical Review E, 2013, 87(4): Article No. 042807.

[1] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Sun Yu, Qiu Jiangnan. Research on Influence of Opinion Leaders Based on Network Analysis and Text Mining [J]. 数据分析与知识发现, 0, (): 1-.
[4] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[5] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[6] Wang Hao, Lin Kerou, Meng Zhen, Li Xinlei. Identifying Multi-Type Entities in Legal Judgments with Text Representation and Feature Generation[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[7] Yang Hanxun, Zhou Dequn, Ma Jing, Luo Yongcong. Detecting Rumors with Uncertain Loss and Task-level Attention Mechanism[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[8] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[9] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[10] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[11] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[12] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[15] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938