Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (10): 33-41    DOI: 10.11925/infotech.1003-3513.2016.10.04
Orginal Article Current Issue | Archive | Adv Search |
Automatically Building “Feature Items Ontology” for Trending Topics
Ma Jing(),He Xuefeng,Jian Xuwen
College of Economic and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to propose an algorithm to build “Feature Items Ontology”. [Context] Trending topics online are constantly changing and involve extensive fields. The existing research on automatically creating Ontology is limited to specific areas, which cannot effectively process the dynamic trending topics. [Methods] First, we analyzed the contents of major events from the trending topics. Second, we designed an algorithm automatically generating the Ontology. Third, with the guidance of initial Ontology, proposed an evolutionary algorithm to track the changing topics. [Results] Using the case of “Wei Zexi and Baidu” as an example, we collected 11,174 Sina Weibo posts to conduct two rounds of experiment. We initially extracted 7,421 feature items, 39 key nodes, and 781 key relationships. For the evolutionary results, we got 24,564 feature items, 67 key nodes, and 1,818 key relations. The missing rates, the false positive rates, and the loss costs were 0.1261, 0.0964 and 0.5985, which were all better than those of the TF-IDF algorithm. [Conclusions] The “Feature Items Ontology” is more accurate than the single word Ontology description, and is easier to calculate the semantic similarity. It is an appropriate method to retrieve semantic information from the dynamic trending topics.

Key wordsFeature items      Ontology generation      Ontology evolution      Topic tracking     
Received: 12 June 2016      Published: 23 November 2016

Cite this article:

Ma Jing,He Xuefeng,Jian Xuwen. Automatically Building “Feature Items Ontology” for Trending Topics. New Technology of Library and Information Service, 2016, 32(10): 33-41.

URL:     OR

[1] Studer R, Benjamins V R, Fensel D.Knowledge Engineering: Principles and Methods[J]. Data & Knowledge Engineering, 1998, 25(1): 161-197.
[2] 杜小勇, 李曼, 王珊. 本体学习研究综述[J]. 软件学报, 2006, 17(9): 1837-1847.
[2] (Du Xiaoyong, Li Man, Wang Shan.A Survey on Ontology Learning Research[J]. Journal of Software, 2006, 17(9): 1837-1847.)
[3] 尚新丽. 国外本体构建方法比较分析[J]. 图书情报工作, 2012, 56(4): 116-119.
[3] (Shang Xinli.Comparative Analysis of Foreign Ontology Construction Methods[J]. Library and Information Service, 2012, 56(4): 116-119.)
[4] Lin D, Pantel P.Induction of Semantic Classes from Natural Language Text[C]. In:Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA. 2001: 317-322.
[5] Srivastava S, Lamadrid J G.Extracting an Ontology from a Document Using Singular Value Decomposition [R]. Association of Computer and Information Science and Engineering Departments at Minority Institutions, 2001.
[6] 何婷婷, 张小鹏. 特定领域本体自动构造方法[J]. 计算机工程, 2007, 33(22): 235-237.
[6] (He Tingting, Zhang Xiaopeng.Approach to Automatical Construction of Domain Ontology[J]. Computer Engineering, 2007, 33(22): 235-237.)
[7] He T T, Zhang X P, Ye X H.An Approach to Automatically Constructing Domain Ontology[C]. In: Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation, Wuhan, China.2006:150-157.
[8] Lim S Y, Park S B, Lee S J.Constructing an Ontology Based on Terminology Processing [C]. In: Proceedings of the 9th International Conference on Knowledge-Based Intelligent Information and Engineering Systems. Springer, 2005: 304-310.
[9] 马静, 吴一占, 刘思峰. 基于领域本体的信息抽取模式生成与系统实现[J]. 情报学报, 2008, 27(2): 193-198.
[9] (Ma Jing, Wu Yizhan, Liu Sifeng.Domain Ontology-based Information Extraction[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 193-198.)
[10] 唐爱民, 真溱, 樊静. 基于叙词表的领域本体构建研究[J]. 现代图书情报技术, 2005 (4): 1-5.
[10] (Tang Aimin, Zhen Zhen, Fan Jing.Thesaurus-based Approach to Build Domain Ontology[J]. New Technology of Library and Information Service, 2005 (4): 1-5.)
[11] Chen R C, Chuang C H.Automating Construction of a Domain Ontology Using a Projective Adaptive Resonance Theory Neural Network and Bayesian Network[J]. Expert Systems, 2008, 25(4): 414-430.
[12] 侯鑫, 张旭堂, 金天国, 等. 面向知识与信息管理的领域本体自动构建算法[J]. 计算机集成制造系统, 2011, 17(1): 159-170.
[12] (Hou Xin, Zhang Xutang, Jin Tianguo, et al.Automatic Construction of Domain Ontology Oriented to Knowledge and Information Management[J]. Computer Integrated Manufacturing Systems, 2011, 17(1): 159-170.)
[13] 郑学伟. 基于知识管理的本体自动构建算法研究[J]. 计算机技术与发展, 2014, 24(12): 64-69.
[13] (Zheng Xuewei.Research on Ontology Automatic Construction Algorithm Based on Knowledge Management[J]. Computer Technology and Development, 2014, 24(12): 64-69.)
[14] 马文峰, 杜小勇. 领域本体进化研究[J]. 图书情报工作, 2006, 50(6): 71-75.
[14] (Ma Wenfeng, Du Xiaoyong.A Study on Domain Ontology Evolution[J]. Library and Information Service, 2006, 50(6): 71-75.)
[15] 杜小勇, 马文峰, 武文娟. 学科领域本体的构建与进化——以经济学领域本体为例[J]. 现代图书情报技术, 2007(3): 7-12.
[15] (Du Xiaoyong, Ma Wenfeng, Wu Wenjuan.Construction and Evolution of Discipline Domain Ontology——A Case Study for Economics Domain Ontology[J]. New Technology of Library and Information Service, 2007(3): 7-12.)
[16] 洪宇, 张宇, 刘挺, 等. 话题检测与跟踪的评测及研究综述[J]. 中文信息学报, 2007, 21(6): 71-96.
[16] (Hong Yu, Zhang Yu, Liu Ting, et al.Topic Detection and Tracking Review[J]. Journal of Chinese Information Processing, 2007, 21(6): 71-96.)
[17] 焦健, 瞿有利. 知网的话题更新与跟踪算法研究[J]. 北京交通大学学报, 2009, 33(5):132-136.
[17] (Jiao Jian, Qu Youli.Algorithm Study of Topic Tracking Based on HowNet and Topic Renewal[J]. Journal of Beijing Jiaotong University, 2009, 33(5):132-136.)
[18] 洪宇, 仓玉, 姚建民, 等. 话题跟踪中静态和动态话题模型的核捕捉衰减[J]. 软件学报, 2012, 23(5): 1101-1119.
[18] (Hong Yu, Cang Yu, Yao Jianmin, et al.Descending Kernel Track of Static and Dynamic Topic Models in Topic Tracking[J]. Journal of Software, 2012, 23(5): 1101-1119.)
[1] Xu Jianmin,Zhang Liqing,Wang Miao. Tracking Static Topics with Bayesian Network[J]. 数据分析与知识发现, 2020, 4(2/3): 200-206.
[2] Qin Xiaohui, Le Xiaoqiu. Topic Sources and Trends Tracking Towards Citation Network of Single Paper[J]. 现代图书情报技术, 2015, 31(9): 52-59.
[3] Zeng Xinhong,Lin Weiming,Ming Zhong . Research and Implementation of Consistency Checking Mechanism for OntoThesaurus[J]. 现代图书情报技术, 2008, 24(5): 1-9.
[4] Du Xiaoyong,Ma Wenfeng,Wu Wenjuan . Construction and Evolution of Discipline Domain Ontology[J]. 现代图书情报技术, 2007, 2(3): 7-12.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938